Galactic cosmic radiation (GCR) is one of the most serious risks posed to astronauts during missions to the Moon and Mars. Experimental models capable of recapitulating human physiology are critical to understanding the effects of radiation on human organs and developing radioprotective measures against space travel exposures. The effects of systemic radiation are studied using a multi-organ-on-a-chip (multi-OoC) platform containing engineered tissue models of human bone marrow (site of hematopoiesis and acute radiation damage), cardiac muscle (site of chronic radiation damage) and liver (site of metabolism), linked by vascular circulation with an endothelial barrier separating individual tissue chambers from the vascular perfusate. Following protracted neutron radiation, the most damaging radiation component in deep space, a greater deviation of tissue function is observed as compared to the same cumulative dose delivered acutely. Further, by characterizing engineered bone marrow (eBM)-derived immune cells in circulation, 58 unique genes specific to the effects of protracted neutron dosing are identified, as compared to acutely irradiated and healthy tissues. It propose that this bioengineered platform allows studies of human responses to extended radiation exposure in an "astronaut-on-a-chip" model that can inform measures for mitigating cosmic radiation injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558103PMC
http://dx.doi.org/10.1002/advs.202401415DOI Listing

Publication Analysis

Top Keywords

cosmic radiation
12
radiation
10
effects protracted
8
radiation human
8
bone marrow
8
radiation damage
8
protracted neutron
8
human
5
modeling effects
4
protracted cosmic
4

Similar Publications

Background: Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored.

View Article and Find Full Text PDF

Nuclear power plant decommissioning requires the rapid and accurate classification of radioactive waste in narrow spaces and under time constraints. Photon-counting detector technology offers an effective solution for the quick classification and detection of radioactive hotspots in a decommissioning environment. This paper characterizes a 5 mm CdTe Timepix3 detector and evaluates its feasibility as a single-layer Compton camera.

View Article and Find Full Text PDF

Response of the bGeigie Nano and CzechRad Monitors to Secondary Cosmic Radiation.

Sensors (Basel)

December 2024

Graduate School of Health Sciences, Hirosaki University, Hirosaki 036-8560, Japan.

Ambient dose rate surveying has the objective, in most cases, to quantify terrestrial radiation levels. This is true in particular for Citizen Monitoring projects. Readings of detectors, which do not provide spectrally resolved information, such as G-M counters, are the sum of contributions from different sources, including cosmic radiation.

View Article and Find Full Text PDF

Nanoscale Fourier transform infrared (Nano-FTIR) imaging and spectroscopy correlated with photoluminescence measurements of lunar Apollo samples with different surface radiation exposure histories reveal distinct physical and chemical differences associated with space weathering effects. Analysis of two sample fragments: an ilmenite basalt (12016) and an impact melt breccia (15445) show evidence of intrinsic or delivered Nd and an amorphous silica glass component on exterior surfaces, whereas intrinsic Cr and/or trapped electron states are limited to interior surfaces. Spatially localized 1050 cm/935 cm band ratios in Nano-FTIR hyperspectral maps may further reflect impact-induced shock nanostructures, while shifts in silicate band positions indicate accumulated radiation damage at the nanoscale from prolonged space weathering due to micrometeorites, solar wind, energetic x-rays and cosmic ray bombardment.

View Article and Find Full Text PDF

Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.

Nanotechnology

January 2025

Departamento de Física, Química e Matemática, CCTS, UFSCar-campus Sorocaba, Sorocaba, SP 18052-780, Brazil.

Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!