Background: Low-density lipoprotein cholesterol (LDL-C) is associated with atherosclerotic cardiovascular disease (ASCVD). Friedewald, Sampson, and Martin-Hopkins equations are used to calculate LDL-C. This study compares the impact of switching between these equations in a large geographically defined population.
Materials And Methods: Data for individuals who had a lipid panel ordered clinically between 2010 and 2019 were included. Comparisons were made across groups using the two-sample t-test or chi-square test as appropriate. Discordances between LDL measures based on clinically actionable thresholds were summarized using contingency tables.
Results: The cohort included 198,166 patients (mean age 54 years, 54% female). The equations perform similarly at the lower range of triglycerides but began to diverge at a triglyceride level of 125 mg/dL. However, at triglycerides of 175 mg/dL and higher, the Martin-Hopkins equation estimated higher LDL-C values than the Samson equation. This discordance was further exasperated at triglyceride values of 400 to 800 mg/dL. When comparing the Sampson and Friedewald equations, at triglycerides are below 175 mg/dL, 9% of patients were discordant at the 70 mg/dL cutpoint, whereas 42.4% were discordant when triglycerides are between 175 and 400 mg/dL. Discordance was observed at the clinically actionable LDL-C cutpoint of 190 mg/dL with the Friedewald equation estimating lower LDL-C than the other equations. In a high-risk subgroup (ASCVD risk score > 20%), 16.3% of patients were discordant at the clinical cutpoint of LDL-C < 70 mg/dL between the Sampson and Friedewald equations.
Conclusions: Discordance at clinically significant LDL-C cutpoints in both the general population and high-risk subgroups were observed across the three equations. These results show that using different methods of LDL-C calculation or switching between different methods could have clinical implications for many patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223329 | PMC |
http://dx.doi.org/10.1186/s12944-024-02188-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!