Appropriate characterization of reservoir properties and investigation of the effect of these properties on microbial metabolism and oil recovery under simulated reservoir conditions can aid in development of a sustainable microbial enhanced oil recovery (MEOR) process. Our present study has unveiled the promising potential of the hyperthermophilic archaeon, identified as Thermococcus petroboostus sp. nov. 101C5, to positively influence the microenvironment within simulated oil reservoirs, by producing significant amounts of metabolites, such as biosurfactants, biopolymers, biomass, acids, solvents, gases. These MEOR desired metabolites were found to cause a series of desirable changes in the physicochemical properties of crude oil and reservoir rocks, thereby enhancing oil recovery. Furthermore, our study demonstrated that the microbial activity of 101C5 led to the mobilization of crude oil, consequently resulting in enhanced production rates and increased efficiency in simulated sand pack trials. 101C5 exhibited considerable potential as a versatile microorganism for MEOR applications across diverse reservoir conditions, mediating significant light as well as heavy oil recovery from Berea/carbonaceous nature of rock bearing intergranular/vugular/fracture porosity at extreme reservoir conditions characterized by high temperature (80-101 °C) and high pressure (700-1300 psi). Core flood study, which truly mimicked the reservoir conditions demonstrated 29.5% incremental oil recovery by 101C5 action from Berea sandstone at 900 psi and 96 °C, underscoring the potential of strain 101C5 for application in the depleted high temperature oil wells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224412 | PMC |
http://dx.doi.org/10.1038/s41598-024-65728-4 | DOI Listing |
Food Chem
December 2024
State Key Laboratory of Food Science and Resource, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China. Electronic address:
In this study, pea protein isolate (PPI) and cellulose nanocrystals (CNC) were used to prepare oil-in-water emulsions, and the effects of pH and the oil content on the properties of the emulsions were investigated. The microstructural analysis revealed that PPI and CNC formed complexes by electrostatic attraction at pH 3.0 and 4.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Food Processing Business Incubation Centre, India. Electronic address:
This study explores the effect of individual and combination treatments of ultrasound (US) and high pressure (HP) on the extraction of pearl millet protein isolate (PMPI). Compared to the conventional extraction technique (control) the millets treated with non-thermal techniques provided a higher protein recovery percentage. The highest recovery of 63.
View Article and Find Full Text PDFNPJ Sci Food
December 2024
Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands.
Groundnuts are considered as one of the most important cultivated food crops globally. Groundnuts are used for vegetable oil production, which generate a variety of by-products, such as peanut press cake (PPC). Groundnuts are sensitive to infection by aflatoxigenic fungi.
View Article and Find Full Text PDFUltrason Sonochem
December 2024
State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
This study aimed to investigate the effect of ultrasound-assisted cross-linking of myofibrillar protein (MP) emulsions on the enhancement of rheological and tribological properties of emulsion-filled gel. The micro-morphology, texture, water hold capacity (WHC), chemical forces, linear shear rheological behavior, large amplitude oscillatory shear (LAOS), oil-released content, and simulated oral friction of the water-filled gel (WP-G), the original MP fabricated emulsion-filled gel (NP-G), the crosslinked MP fabricated emulsion-filled gel (NPG-G), and the ultrasound treated crosslinked MP fabricated emulsion-filled gel (NPGU-G) were determined. Results indicated that emulsion as filler phase significantly improved the rheological and tribological properties of the gel, especially for the ultrasound-assisted MP emulsion-filled gel (NPGU-G) group, the smaller droplet size of emulsion contributed to the density and structural uniformity of the gel.
View Article and Find Full Text PDFRecent Pat Biotechnol
December 2024
Biotechnology Process and Macromolecules Purification Laboratory, Federal University of São João del-Rei, 35501-296, Divinópolis, MG, Brazil.
Background: The increasing industrialization and hydrocarbon use have led to concerning soil contamination. Oil spills and improper disposal of oily waste pose threats to ecosystems and human health. The recovery of these environments is essential, but separating oily components from soil remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!