Latex paint is an aqueous dispersion of nano-sized polymer particles that can form a thin film by itself or mixed with rigid particles. We have developed an apparatus that can simultaneously measure drying rate and stress generation and have investigated the film formation process of a latex-only coating layer under convection drying. In the present study, we adopted the same method to investigate the film formation process of the silica-latex coating layer. As a result, we were able to systematically correlate the drying rate change by the equivalent thickness of latex particles accumulated with silica particles at the drying surface. Furthermore, it is unveiled that the drying rate in the former stage depends on drying temperature, while the drying rate changed to be dominated by silica content after the particle-packing layer was formed over the entire coating layer. On the other hand, the model we proposed for stress generation, considering the temperature effect on latex deformability, was found to be applicable to the present experimental system by replacing a portion of deformable particles with rigid particles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224093 | PMC |
http://dx.doi.org/10.1140/epje/s10189-024-00432-9 | DOI Listing |
J Tissue Viability
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran. Electronic address:
Scientists investigated probiotic-containing dressings to address the challenges associated with burn injuries, namely infection and antimicrobial resistance. The present investigation sought to evaluate the impact of innovative probiotic-loaded microparticles with in situ gelling characteristics on infected burns. The strain, Lactiplantibacillus plantarum, was selected due to its demonstrated wound-healing potential.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Center for Engineering Concepts Development, Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States.
In 2020, nearly 3 million scientific and engineering papers were published worldwide (White, K. Publications Output: U.S.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
China Astronaut Research and Training center, Beijing 100094, PR China.
In order to explore the management and treatment methods of solid waste in the Controlled Ecological Life Support System (CELSS) of future lunar bases, during the 4-crew 180-day integrated experiment, the Solid Waste Management and Treatment System (SWMTS) was built, in which the treatment of recyclable solid waste such as inedible plant parts and human excrement was completed through a combination of biological aerobic composting and high-temperature oxidation. Basic data on the types and amounts of solid waste generated during the 4-crew 180-day experiment mission were obtained. There were six types of solid wastes, including the work support wastes, the household support wastes, the plant cultivation wastes, the plant-based wastes, and crew feces.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China.
This paper aims to address the challenge of precise robotic grasping of molecular sieve drying bags during automated packaging by proposing a six-dimensional (6D) pose estimation method based on an red green blue-depth (RGB-D) camera. The method consists of three components: point cloud pre-segmentation, target extraction, and pose estimation. A minimum bounding box-based pre-segmentation method was designed to minimize the impact of packaging wrinkles and skirt curling.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China.
In this paper, the early drying shrinkage coefficients of different hydraulic cement mortars are calibrated through laboratory experiments for moderate-heat Portland cement (MHPC) and low-heat Portland cement (LHPC). By developing an improved mesoscale modeling approach, a 3D highly detailed simulation of concrete was generated, which incorporates the phases of mortar, aggregates, and interfacial transition zone (ITZ). The simulation result is in good agreement with the concrete early drying shrinkage experiment, exhibiting an error of less than 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!