Pharmacokinetic changes induced by radiation following radiotherapy ("RT-PK" phenomenon) are of great significance to the effectiveness and safety of chemotherapeutic agents in clinical settings. The aims of this study were to clarify the organic anion transporters (Oats) involved in the "RT-PK" phenomenon of bestatin in rats following X-ray irradiation and to elucidate its potential mechanism via vitamin D signalling. Pharmacokinetic studies, uptake assays using rat kidney slices and primary proximal tubule cells, and molecular biological studies were performed. Significantly increased plasma concentrations and systemic exposure to bestatin were observed at 24 and 48 h following abdominal X-ray irradiation, regardless of oral or intravenous administration of the drugs in rats. Reduced renal clearance and cumulative urinary excretion of bestatin were observed at 24 and 48 h post-irradiation in rats following intravenous administration. The uptake of the probe substrates p-aminohippuric acid and oestrone 3-sulfate sodium in vitro and the expression of Oat1 and Oat3 in vivo were reduced in the corresponding models following irradiation. Moreover, the upregulation of the vitamin D receptor (Vdr) in mRNA and protein levels negatively correlated with the expressions and functions of Oat1 and Oat3 following irradiation. Additionally, elevated plasma urea nitrogen levels and histopathological changes were observed in rats after exposure to irradiation. The "RT-PK" phenomenon of bestatin occurs in rats after exposure to irradiation, possibly resulting in the regulation of the expressions and activities of renal Oats via activation of the Vdr signalling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2024.111123 | DOI Listing |
Acta Biomater
January 2025
Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041. Electronic address:
Although immunotherapy has revolutionized clinical cancer treatment, the efficacy is limited due to the lack of tumor-associated antigens (TAAs) and the presence of compensatory immune checkpoints. To overcome the deficiency, a nano-system loaded with ozone and CD47 inhibitor RRx-001 is designed and synthesized. Upon irradiation, reactive oxygen species (ROS) generated from ozone reacts with nitric oxide (NO) metabolized from RRx-001 to form reactive nitrogen species (RNS), which presents a much stronger cell-killing ability than ROS.
View Article and Find Full Text PDFBackground/objectives: Bone marrow (BM) adipocytes are critical in progressing solid tumor metastases and hematological malignancies across pediatric to aging populations. Single-point biopsies remain the gold standard for monitoring BM diseases, including hematologic malignancies, but are limited in capturing the full complexity of loco-regional and global BM microenvironments. Non-invasive imaging techniques like Magnetic Resonance Imaging (MRI), could offer valuable alternatives for real-time evaluation of BM diseases in both preclinical translational and clinical studies.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
October 2024
Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark.
Background And Purpose: Radiotherapy for paediatric posterior fossa tumours may cause complications in the brainstem and upper spinal cord due to high doses. With proton therapy (PT) this risk may increase due to higher relative biological effectiveness (RBE) from elevated linear energy transfer (LET). This study assesses variations in LET in the brainstem and spinal cord in proton treatment plans from European centres.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
January 2025
Division of Cancer Sciences, University of Manchester, Manchester, UK.
Background And Purpose: Magnetic resonance imaging - linear accelerator (MRI-linac) systems permit imaging of tumours to guide treatment. Dynamic contrast enhanced (DCE)-MRI allows investigation of tumour perfusion. We assessed the feasibility of performing DCE-MRI on a 1.
View Article and Find Full Text PDFNanoscale
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!