A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detection of virtual reality motion sickness based on EEG using asymmetry of entropy and cross-frequency coupling. | LitMetric

Detection of virtual reality motion sickness based on EEG using asymmetry of entropy and cross-frequency coupling.

Physiol Behav

Measurement Technology and Instrumentation Key Laboratory of Hebei Province, Department of Electrical Engineering, Yanshan University, Qinhuangdao 066000, China. Electronic address:

Published: October 2024

The existence of Virtual Reality Motion Sickness (VRMS) is a key factor restricting the further development of the VR industry, and the premise to solve this problem is to be able to accurately and effectively detect its occurrence. In view of the current lack of high-accuracy and effective detection methods, this paper proposes a VRMS detection method based on entropy asymmetry and cross-frequency coupling value asymmetry of EEG. First of all, the EEG of the four selected pairs of electrodes on the bilateral brain are subjected to Multivariate Variational Mode Decomposition (MVMD) respectively, and three types of entropy values on the low-frequency and high-frequency components are calculated, namely approximate entropy, fuzzy entropy and permutation entropy, as well as three types of phase-amplitude coupling features between the low-frequency and high-frequency components, namely the mean value, standard deviation and correlation coefficient; Secondly, the difference of the entropies and the cross-frequency coupling features between the left electrodes and the right electrodes are calculated; Finally, the final feature set are selected via t-test and fed into the SVM for classification, thus realizing the automatic detection of VRMS. The results show that the three classification indexes under this method, i.e., accuracy, sensitivity and specificity, reach 99.5 %, 99.3 % and 99.7 %, respectively, and the value of the area under the ROC curve reached 1, which proves that this method can be an effective indicator for detecting the occurrence of VRMS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2024.114626DOI Listing

Publication Analysis

Top Keywords

cross-frequency coupling
12
virtual reality
8
reality motion
8
motion sickness
8
three types
8
low-frequency high-frequency
8
high-frequency components
8
coupling features
8
entropy
6
detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!