Integrated histological, physiological, and transcriptome analysis reveals the post-exposure recovery mechanism of nitrite in Litopenaeus vannamei.

Ecotoxicol Environ Saf

College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:

Published: August 2024

Nitrite is one of the most common toxic pollutants in intensive aquaculture and is harmful to aquatic animals. Recovery mechanisms post exposure to nitrite in shrimp have rarely been investigated. This study focuses on the effect of nitrite exposure and post-exposure recovery on the histological and physiological aspects of Litopenaeus vannamei and utilizes transcriptome sequencing to analyze the molecular mechanisms of adaptation to nitrite exposure. The results showed that histopathological damage to the hepatopancreas and gills caused by short-term nitrite exposure resolved with recovery. The total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) of shrimp were significantly reduced during nitrite exposure and returned to the control level after recovery, malondialdehyde (MDA) levels were opposite to them. Restoration of the antioxidant system after exposure mitigated oxidative damage. Nitrite exposure results in reduced activity of the immuno-enzymes acid phosphatase (ACP) and alkaline phosphatase (AKP), which can be recovered to the control level. L. vannamei can adapt to nitrite exposure by regulating Na/K-ATPase (NKA) activity. Transcriptome analysis revealed that activation of glutathione metabolism and peroxisomal pathways facilitated the mitigation of oxidative damage in L. vannamei during the recovery period. Excessive oxidative damage activates the apoptosis and p53 pathways. Additionally, Sestrin2 and STEAP4 may have a positive effect on recovery in shrimp. These results provide evidence for the damage caused by nitrite exposure and the recovery ability of L. vannamei. This study can complement the knowledge of the mechanisms of adaptation and recovery of shrimp under nitrite exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.116673DOI Listing

Publication Analysis

Top Keywords

nitrite exposure
32
oxidative damage
12
nitrite
11
exposure
10
recovery
9
histological physiological
8
transcriptome analysis
8
post-exposure recovery
8
litopenaeus vannamei
8
mechanisms adaptation
8

Similar Publications

Since the establishment of the COVID-19 pandemic, a range of studies have been developed to understand the pathogenesis of SARS-CoV-2 infection, vaccine development, and therapeutic testing. However, the possible impacts that these viruses can have on non-target organisms have been explored little, and our knowledge of the consequences of the COVID-19 pandemic for biota is still very limited. Thus, the current study aimed to address this knowledge gap by evaluating the possible impacts of oral exposure of C57Bl/6 J female mice to SARS-CoV-2 lysate protein (at 20 µg/L) for 30 days, using multiple methods, including behavioral assessments, biochemical analyses, and histopathological examinations.

View Article and Find Full Text PDF

Sponge exhalent metabolites influence coral reef picoplankton dynamics.

Sci Rep

December 2024

Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.

Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.

View Article and Find Full Text PDF

Currently, the increasing use of nickel metal-organic frameworks (Ni-MOF) and nickel oxide nanoparticles (NiO NPs) has raised concerns regarding their potential environmental impact on wastewater treatment systems. Herein, the responses of aerobic granular sludge (AGS) and algal-bacterial aerobic granular sludge (AB-AGS) to Ni-MOF and NiO NPs were investigated. The results showed that Ni-MOF concentrations of 50, 100, and 200 mg/L significantly reduced nutrient removal in both systems, particularly affecting ammonia, nitrite, and phosphorus removal, while denitrification processes remained stable.

View Article and Find Full Text PDF

Objectives: This cohort study investigated the possible association of dietary nitrate (NO)/nitrite (NO) intake and risk of progression to type 2 diabetes (T2D) across different phenotypes of prediabetes (Pre-DM).

Methods: A total of 1586 adults diagnosed with Pre-DM [i.e.

View Article and Find Full Text PDF

Partial denitrification coupled with anammox is a promising approach for sustainable nitrogen removal from wastewater. However, this coupling can be influenced by hydrazine (NH) released by anammox bacteria. This study aimed to reveal how NH regulates partial denitrification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!