A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alignment of lyotropic liquid crystals using magnetic nanoparticles improves ionic transport through built-in peptide ion channels. | LitMetric

Alignment of lyotropic liquid crystals using magnetic nanoparticles improves ionic transport through built-in peptide ion channels.

J Colloid Interface Sci

Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland. Electronic address:

Published: November 2024

Hypothesis: We hypothesize that simultaneous incorporation of ion channel peptides (in this case, potassium channel as a model) and hydrophobic magnetite FeO nanoparticles (hFeONPs) within lipidic hexagonal mesophases, and aligning them using an external magnetic field can significantly enhance ion transport through lipid membranes.

Experiments: In this study, we successfully characterized the incorporation of gramicidin membrane ion channels and hFeONPs in the lipidic hexagonal structure using SAXS and cryo-TEM methods. Additionally, we thoroughly investigated the conductive characteristics of freestanding films of lipidic hexagonal mesophases, both with and without gramicidin potassium channels, utilizing a range of electrochemical techniques, including impedance spectroscopy, normal pulse voltammetry, and chronoamperometry.

Findings: Our research reveals a state-of-the-art breakthrough in enhancing ion transport in lyotropic liquid crystals as matrices for integral proteins and peptides. We demonstrate the remarkable efficacy of membranes composed of hexagonal lipid mesophases embedded with K transporting peptides. This enhancement is achieved through doping with hFeONPs and exposure to a magnetic field. We investigate the intricate interplay between the conductive properties of the lipidic hexagonal structure, hFeONPs, gramicidin incorporation, and the influence of Ca on K channels. Furthermore, our study unveils a new direction in ion channel studies and biomimetic membrane investigations, presenting a versatile model for biomimetic membranes with unprecedented ion transport capabilities under an appropriately oriented magnetic field. These findings hold promise for advancing membrane technology and various biotechnological and biomedical applications of membrane proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.06.227DOI Listing

Publication Analysis

Top Keywords

lipidic hexagonal
16
magnetic field
12
ion transport
12
lyotropic liquid
8
liquid crystals
8
ion channels
8
ion channel
8
hfeonps lipidic
8
hexagonal mesophases
8
hexagonal structure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!