Carcinoembryonic Antigen (CEA), an acidic glycoprotein with human embryonic antigen properties, is found on the surface of cancer cells that have differentiated from endodermal cells. This paper presents a label-free electrochemical immunoassay for the dual amplification detection of CEA using gold nanoparticles loaded with polypyrrole polydopamine (Au/PPy-PDA) and polymerized polycaprolactone (Ng-PCL) prepared by ring-opening polymerization (ROP). First, the composite Au/PPy-PDA was adhered to the electrode surface. Then, gold nanoparticles form a Au-S bond with the sulfhydryl group in Apt1 to secure it on the electrode surface. Subsequently, the non-specific binding sites on the electrodes surface are closed by bovine serum albumin (BSA). Next, CEA is dropped onto the electrode surface, which is immobilized by antigen-antibody specific recognition, and the carboxyl-functionalized Apt2 forms a "sandwich structure" of antibody-antigen-antibody by specific recognition. Polymeric Ng-PCL is adhered to the electrode surface, leading to an increase in the electrochemical impedance signal, resulting in a complete chain of signal analysis. Finally, the response signal is detected by electrochemical impedance spectroscopy (EIS). Under optimal experimental conditions, the method has the advantages of high sensitivity and wide linear range (1 pg mL∼100 ng mL), and the lower limit of detection (LOD) is 0.234 pg mL. And it has the same high sensitivity, selectivity and interference resistance for the real samples detection. Thus, it provides a new way of thinking about biomedical and clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126468DOI Listing

Publication Analysis

Top Keywords

electrode surface
16
gold nanoparticles
12
label-free electrochemical
8
dual amplification
8
adhered electrode
8
specific recognition
8
electrochemical impedance
8
high sensitivity
8
surface
6
electrochemical biosensor
4

Similar Publications

The detection and analysis of circulating cell-free nucleic acid (ccfNA) biomolecules are redefining a new era of molecular targeted cancer therapies. However, the clinical translation of electrochemical ccfNA biosensing remains hindered by unresolved challenges in analytical specificity and sensitivity. In this Perspective, we present a novel electrochemical framework for improving ccfNA biosensor performance by optimizing the critical electrode-biomolecules-electrolyte interfaces.

View Article and Find Full Text PDF

The Role of Surfactant in Electrocatalytic Carbon Dioxide Reduction in the Absence of Metal Cations.

ACS Electrochem

January 2025

Stephenson Institute for Renewable Energy (SIRE) and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom.

Carbon dioxide electroreduction does not occur on Au when metal cations are absent from the electrode surfaces. Here we show that the electroreduction can be enabled without metal cations, albeit with low efficiency, by the presence of cationic surfactants on Au. The findings demonstrate that in addition to possibly stabilizing CO reduction intermediates the presence of surfactants plays a role in suppressing the competing reactions.

View Article and Find Full Text PDF

Optically Transparent Carbon Electrodes for Single Entity Electrochemistry.

ACS Electrochem

January 2025

Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.

We demonstrate the application and benefit of optically transparent carbon electrodes (OTCEs) for single entity nanoelectrochemistry. OTCEs are prepared by pyrolyzing thin photoresist films on fused quartz coverslips to create conductive, transparent, thin films. Optical, electrical, topographical, and electrochemical properties of OTCEs are characterized to evaluate their suitability for single entity electrochemistry.

View Article and Find Full Text PDF

An original approach to characterize electrochemical interfaces at the atomic level, a challenging topic toward the understanding of electrochemical reactivity, is reported. We employed surface resonant X-ray diffraction experiments combined with their simulation using first-principle density functional theory calculations and were thus able to determine the molecular and electronic structures of the partially ionic layer facing the electrode surface, as well as the charge distribution in the surface metal layers. Pt(111) in an acidic medium at an applied potential excluding specific adsorption was studied.

View Article and Find Full Text PDF

Measuring the heart rate of sea turtles is important for understanding their physiological adaptations to the environment. Non-invasive methods to measure the electrocardiogram (ECG) of sea turtles have been developed by attaching electrodes to their carapace. However, this method has only been applicable to sea turtles with sparse keratin on their shell surfaces, such as loggerhead turtles, and it is difficult to detect heartbeats in sea turtles with dense keratinous scutes, including green sea turtles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!