Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nucleophilic vinylic substitution (SV) by carbon nucleophiles allows the formation of vinylic C-C bonds without transition metal catalysts. In this paper, we show that tethering two alkenes together through a urea linkage can lead to the formation of a diene by an intramolecular SV reaction. The starting materials are fully substituted N,N'-diallyl ureas; the reaction proceeds in the presence of base, and entails a cascade of deprotonations, reprotonations, and an SV reaction of an allylic carbanion on a rare electrophile: a vinylic urea. As a result, two allylic substituents couple to form a diene, despite the fact that neither is activated towards electrophilic attack. The reaction is tolerant of significant steric bulk, and exhibits regioselectivity with unsymmetrical diallyl ureas: β-substituted allyl groups invariably behave as nucleophiles, while electrophilic behavior may be enforced by the use of an E-vinylic urea substituent that cannot be deprotonated under the reaction conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202402352 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!