Drug targeting for brain malignancies is restricted due to the presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), which act as barriers between the blood and brain parenchyma. Certainly, the limited therapeutic options for brain malignancies have made notable progress with enhanced biological understanding and innovative approaches, such as targeted therapies and immunotherapies. These advancements significantly contribute to improving patient prognoses and represent a promising shift in the landscape of brain malignancy treatments. A more comprehensive understanding of the histology and pathogenesis of brain malignancies is urgently needed. Continued research focused on unraveling the intricacies of brain malignancy biology holds the key to developing innovative and tailored therapies that can improve patient outcomes. Lipid nanocarriers are highly effective drug delivery systems that significantly improve their solubility, bioavailability, and stability while also minimizing unwanted side effects. Surface-modified lipid nanocarriers (liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, lipid nanocapsules, lipid-polymer hybrid nanocarriers, lipoproteins, and lipoplexes) are employed to improve BBB penetration and uptake through various mechanisms. This systematic review illuminates and covers various topics related to brain malignancies. It explores the different methods of drug delivery used in treating brain malignancies and delves into the benefits, limitations, and types of brain-targeted lipid-based nanocarriers. Additionally, this review discusses ongoing clinical trials and patents related to brain malignancy therapies and provides a glance into future perspectives for treating this condition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-024-03212-6DOI Listing

Publication Analysis

Top Keywords

brain malignancies
24
brain malignancy
12
brain
10
lipid-based nanocarriers
8
targeting brain
8
lipid nanocarriers
8
drug delivery
8
malignancies
6
nanocarriers
5
lipid
5

Similar Publications

MR Elastography Using the Gravitational Transducer.

Sensors (Basel)

December 2024

Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London WC2R 2LS, UK.

MR elastography is a non-invasive imaging technique that provides quantitative maps of tissue biomechanical properties, i.e., elasticity and viscosity.

View Article and Find Full Text PDF

Glioblastoma multiforme is an aggressive malignancy with a dismal 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier (BBB). We have previously shown that high-amplitude repetitive transcranial magnetic stimulation (rTMS) in rats allowed the delivery across the BBB of an IGF signaling inhibitor-IGF-Trap.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and aggressive form of brain cancer in adults, characterized by extensive growth, a high recurrence rate, and resistance to treatment. Growing research interest is focusing on the biological roles of natural compounds due to their potential beneficial effects on health. Our research aimed to investigate the effects of lavender essential oil (LEO) on a GBM cell model.

View Article and Find Full Text PDF

Odorant receptors (ORs), which constitute approximately 50% of all human G protein-coupled receptors, are increasingly recognized for their diverse roles beyond odor perception, including functions in various pathological conditions like brain diseases and cancers. However, the roles of ORs in glioblastoma (GBM), the most aggressive primary brain tumor with a median survival of only 15 months, remain largely unexplored. Here, we performed an integrated transcriptomic analysis combining The Cancer Genome Atlas RNA-seq and single-cell RNA sequencing data from GBM patients to uncover cell-type-specific roles of ORs within the tumor and its microenvironment.

View Article and Find Full Text PDF

The Potential Application of Resveratrol and Its Derivatives in Central Nervous System Tumors.

Int J Mol Sci

December 2024

Department of Pharmacology and Therapeutics, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-090 Bydgoszcz, Poland.

Resveratrol, a naturally occurring polyphenolic compound found in various plants, has been extensively studied for its broad spectrum of beneficial biological effects. These encompass its potent antioxidant properties, anti-inflammatory activities, anti-aging capabilities, cardioprotective functions, and neuroprotective potential. The diverse biological actions of resveratrol extend beyond these well-established properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!