Intermittent hypoxia (IH) is an independent risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). Copper deficiency can disrupt redox homeostasis, iron, and lipid metabolism. Here, we investigated whether hepatic copper deficiency plays a role in IH-associated MAFLD and explored the underlying mechanism(s). Male C57BL/6 mice were fed a western-type diet with adequate copper (CuA) or marginally deficient copper (CuD) and were exposed separately to room air (RA) or IH. Hepatic histology, plasma biomarkers, copper-iron status, and oxidative stress were assessed. An in vitro HepG2 cell lipotoxicity model and proteomic analysis were used to elucidate the specific targets involved. We observed that there were no differences in hepatic phenotypes between CuA-fed and CuD-fed mice under RA. However, in IH exposure, CuD-fed mice showed more pronounced hepatic steatosis, liver injury, and oxidative stress than CuA-fed mice. IH induced copper accumulation in the brain and heart and exacerbated hepatic copper deficiency and secondary iron deposition. In vitro, CuD-treated cells with IH exposure showed elevated levels of lipid accumulation, oxidative stress, and ferroptosis susceptibility. Proteomic analysis identified 360 upregulated and 359 downregulated differentially expressed proteins between CuA and CuD groups under IH; these proteins were mainly enriched in citrate cycle, oxidative phosphorylation, fatty acid metabolism, the peroxisome proliferator-activated receptor (PPAR)α pathway, and ferroptosis. In IH exposure, CuD significantly upregulated the ferroptosis-promoting factor arachidonyl-CoA synthetase long chain family member (ACSL)4. ACSL4 knockdown markedly eliminated CuD-induced ferroptosis and lipid accumulation in IH exposure. In conculsion, IH can lead to reduced hepatic copper reserves and secondary iron deposition, thereby inducing ferroptosis and subsequent MAFLD progression. Insufficient dietary copper may worsen IH-associated MAFLD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202400840R | DOI Listing |
Mymensingh Med J
January 2025
Dr Mousumi Saha, Assistant Professor, Fetomaternal Medicine Subspeciality (FCPS) Course Student, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh; E-mail:
Wilson's disease is an autosomal recessive disorder that affects copper transport due to deficiency of ceruloplasmin and causes deposition of copper mainly in the liver, brain and cornea. It causes hepatic and/or neuropsychiatric manifestations. This copper deposition causes cirrhosis of the liver, encephalopathy and liver failure.
View Article and Find Full Text PDFJ Gastrointestin Liver Dis
December 2024
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
Background And Aims: Wilson disease (WD) results in the defective incorporation of copper into ceruloplasmin as well as decreased biliary copper excretion. Secondary iron overload has also been associated with WD; however, the prevalence is currently unknown. This study aims to determine the prevalence of potential secondary iron overload in patients suspected to have WD.
View Article and Find Full Text PDFJ Mol Histol
November 2024
Anatomy and Embryology Department, College of Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
Int J Mol Sci
November 2024
Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland.
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the liver and acts by incorporating copper into ceruloplasmin (Cp), the major copper transport protein in the blood.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
National Reference Center for Wilson Disease and Other Rare Copper Related Diseases, Hôpital Fondation Adolphe de Rothschild, Paris, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!