Metal-organic frameworks (MOFs) are one of the most promising hydrogen-storing materials due to their rich specific surface area, adjustable topological and pore structures, and modified functional groups. In this work, we developed automatically parallel computational workflows for high-throughput screening of ∼11,600 MOFs from the CoRE database and discovered 69 top-performing MOF candidates with work capacity greater than 1.00 wt % at 298.5 K and a pressure swing between 100 and 0.1 bar, which is at least twice that of MOF-5. In particular, ZITRUP, OQFAJ01, WANHOL, and VATYIZ showed excellent hydrogen storage performance of 4.48, 3.16, 2.19, and 2.16 wt %. We specifically analyzed the relationship between pore-limiting diameter, largest cavity diameter, void fraction, open metal sites, metal elements or nonmetallic atomic elements, and deliverable capacity and found that not only geometrical and physical features of crystalline but also chemical properties of adsorbate sites determined the H storage capacity of MOFs at room temperature. It is highlighted that we first proposed the modified crystal graph convolutional neural networks by incorporating the obtained geometrical and physical features into the convolutional high-dimensional feature vectors of period crystal structures for predicting H storage performance, which can improve the prediction accuracy of the neural network from the former mean absolute error (MAE) of 0.064 wt % to the current MAE of 0.047 wt % and shorten the consuming time to about 10 times of high-throughput computational screening. This work opens a new avenue toward high-throughput screening of MOFs for H adsorption capacity, which can be extended for the screening and discovery of other functional materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c06416 | DOI Listing |
Cancer Med
January 2025
Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China.
Background: Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent and lethal malignancies worldwide. Despite progress in immunotherapy for cancer treatment, its application and efficacy in ESCC remain limited. Therefore, there is an ongoing need to explore potential molecules and therapeutic strategies related to tumor immunity in ESCC.
View Article and Find Full Text PDFMethods
January 2025
School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China.
Compound-protein interaction (CPI) prediction is critical in the early stages of drug discovery, narrowing the search space for CPIs and reducing the cost and time required for traditional high-throughput screening. However, CPI-related data are usually distributed across different institutions and their sharing is restricted because of data privacy and intellectual property rights. Constructing a scheme that enhances multi-institutional collaboration to improve prediction accuracy while protecting data privacy is essential.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 2112 Cyprus.
Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.
View Article and Find Full Text PDFAlzheimers Dement (N Y)
January 2025
Indiana Alzheimer Disease Research Center and Center for Neuroimaging, Department of Radiology and Imaging Sciences Indiana University School of Medicine Indianapolis Indiana USA.
Introduction: The exponential growth of genomic datasets necessitates advanced analytical tools to effectively identify genetic loci from large-scale high throughput sequencing data. This study presents Deep-Block, a multi-stage deep learning framework that incorporates biological knowledge into its AI architecture to identify genetic regions as significantly associated with Alzheimer's disease (AD). The framework employs a three-stage approach: (1) genome segmentation based on linkage disequilibrium (LD) patterns, (2) selection of relevant LD blocks using sparse attention mechanisms, and (3) application of TabNet and Random Forest algorithms to quantify single nucleotide polymorphism (SNP) feature importance, thereby identifying genetic factors contributing to AD risk.
View Article and Find Full Text PDFToxicol Sci
January 2025
Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, 21702, USA.
Because the liver plays a vital role in the clearance of exogenous chemical compounds, it is susceptible to chemical-induced toxicity. Animal-based testing is routinely used to assess the hepatotoxic potential of chemicals. While large-scale high-throughput sequencing data can indicate the genes affected by chemical exposures, we need system-level approaches to interpret these changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!