A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Learning Force Field Parameters from Differentiable Particle-Field Molecular Dynamics. | LitMetric

Learning Force Field Parameters from Differentiable Particle-Field Molecular Dynamics.

J Chem Inf Model

Hylleraas Centre for Quantum Molecular Sciences and Department of Chemistry, University of Oslo, PO Box 1033, Blindern, 0315 Oslo, Norway.

Published: July 2024

We develop ∂-HylleraasMD (∂-HyMD), a fully end-to-end differentiable molecular dynamics software based on the Hamiltonian hybrid particle-field formalism, and use it to establish a protocol for automated optimization of force field parameters. ∂-HyMD is templated on the recently released HylleraaasMD software, while using the JAX autodiff framework as the main engine for the differentiable dynamics. ∂-HyMD exploits an embarrassingly parallel optimization algorithm by spawning independent simulations, whose trajectories are simultaneously processed by reverse mode automatic differentiation to calculate the gradient of the loss function, which is in turn used for iterative optimization of the force-field parameters. We show that parallel organization facilitates the convergence of the minimization procedure, avoiding the known memory and numerical stability issues of differentiable molecular dynamics approaches. We showcase the effectiveness of our implementation by producing a library of force field parameters for standard phospholipids, with either zwitterionic or anionic heads and with saturated or unsaturated tails. Compared to the all-atom reference, the force field obtained by ∂-HyMD yields better density profiles than the parameters derived from previously utilized gradient-free optimization procedures. Moreover, ∂-HyMD models can predict with good accuracy properties not included in the learning objective, such as lateral pressure profiles, and are transferable to other systems, including triglycerides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267579PMC
http://dx.doi.org/10.1021/acs.jcim.4c00564DOI Listing

Publication Analysis

Top Keywords

force field
16
field parameters
12
molecular dynamics
12
differentiable molecular
8
parameters
5
∂-hymd
5
learning force
4
field
4
differentiable
4
parameters differentiable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!