Necking localization under quasi-static uniaxial tension is experimentally observed in ductile thin-walled cylindrical tubes, made of soft polypropylene. Necking nucleates at multiple locations along the tube and spreads throughout, involving the occurrence of higher-order modes, evidencing trefoil and fourth-foiled (but rarely even fifth-foiled) shaped cross-sections. No evidence of such a complicated necking occurrence and growth was found in other ductile materials for thin-walled cylinders under quasi-static loading. With the aim of modelling this phenomenon, as well as all other possible bifurcations, a two-dimensional formulation is introduced, in which only the mean surface of the tube is considered, paralleling the celebrated Flügge 's treatment of axially-compressed cylindrical shells. This treatment is extended to include tension and a broad class of nonlinear-hyperelastic constitutive law for the material, which is also assumed to be . The theoretical framework leads to a number of new results, not only for tensile axial force (where necking is modelled and, as a particular case, the classic Considère formula is shown to represent the limit of very thin tubes), but also for compressive force, providing closed-form formulae for wrinkling (showing that a direct application of the Flügge equation can be incorrect) and for Euler buckling. It is shown that the -deformation theory of plasticity (the simplest constitutive assumption to mimic through nonlinear elasticity the plastic branch of a material) captures multiple necking and occurrence of higher-order modes, so that experiments are explained. The presented results are important for several applications, ranging from aerospace and automotive engineering to the vascular mechanobiology, where a thin-walled tube (for instance an artery, or a catheter, or a stent) may become unstable not only in compression, but also in tension.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272985 | PMC |
http://dx.doi.org/10.1039/d4sm00463a | DOI Listing |
Comput Methods Programs Biomed
December 2024
Department of Mechanical and Aerospace Engineering, Polito(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Turin 10129, Italy. Electronic address:
Background And Objectives: Vascular stents are scaffolding structures implanted in the vessels of patients with obstructive disease. Stents are typically designed as cylindrical lattice structures characterized by the periodic repetition of unit cells. Their design, including geometry and material characteristics, influences their mechanical performance and, consequently, the clinical outcomes.
View Article and Find Full Text PDFSoft Matter
July 2024
Instability Lab, University of Trento, via Mesiano 77, 38123-Trento, Italy.
Necking localization under quasi-static uniaxial tension is experimentally observed in ductile thin-walled cylindrical tubes, made of soft polypropylene. Necking nucleates at multiple locations along the tube and spreads throughout, involving the occurrence of higher-order modes, evidencing trefoil and fourth-foiled (but rarely even fifth-foiled) shaped cross-sections. No evidence of such a complicated necking occurrence and growth was found in other ductile materials for thin-walled cylinders under quasi-static loading.
View Article and Find Full Text PDFSensors (Basel)
June 2024
Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
In this study, we have developed an electrostatically suspended accelerometer (ESA) specifically designed for ground use. To ensure sufficient overload capacity and minimize noise resulting from high suspension voltage, we introduced a proof mass design featuring a hollow, thin-walled cylinder with a thin flange fixed at the center, offering the highest surface-area-to-mass ratio compared to various typical proof mass structures. Preload voltage is directly applied to the proof mass via a golden wire, effectively reducing the maximum supply voltage for suspension.
View Article and Find Full Text PDFActa Biomater
January 2024
School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA. Electronic address:
The Cholla cactus is a species of cacti that survives in arid environments and produces a unique mesh-like porous wood. In this article, we present a comprehensive investigation on the hierarchical structure and micromechanical properties of the Cholla cactus wood. Multiple approaches consisting of X-ray tomography, scanning electron microscopy, scanning probe microscopy, nanoindentation, and finite element simulations were used to gain insight into the structure, property, and design principles of the Cholla cactus wood.
View Article and Find Full Text PDFJ Elast
July 2022
DICAM, University of Trento, via Mesiano 77, Trento, Italy.
The famous bifurcation analysis performed by Flügge on compressed thin-walled cylinders is based on a series of simplifying assumptions, which allow to obtain the bifurcation landscape, together with explicit expressions for limit behaviours: surface instability, wrinkling, and Euler rod buckling. The most severe assumption introduced by Flügge is the use of an incremental constitutive equation, which does not follow from any nonlinear hyperelastic constitutive law. This is a strong limitation for the applicability of the theory, which becomes questionable when is utilized for a material characterized by a different constitutive equation, such as for instance a Mooney-Rivlin material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!