Advances in the field of bioactivation have significantly contributed to our understanding and prediction of drug-induced liver injury (DILI). It has been established that many adverse drug reactions, including DILI, are associated with the formation and reactivity of metabolites. Modern methods allow us to detect and characterize these reactive metabolites in earlier stages of drug development, which helps anticipate and circumvent the potential for DILI. Improved models and experimental techniques that better reflect environments are enhancing predictive capabilities for DILI risk. Further, studies on the mechanisms of bioactivation, including enzyme interactions and the role of individual genetic differences, have provided valuable insights for drug optimizations. Cumulatively, this progress is continually refining our approaches to drug safety evaluation and personalized medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03602532.2024.2376023 | DOI Listing |
Indian J Clin Biochem
January 2025
Department of Biochemistry, College of Medicine and J.N.M Hospital, WBUHS, Kalyani, West Bengal 741235 India.
Radiation therapy uses ionizing radiation (IR) to kill cancer cells. However, during radiotherapy normal cells are also damaged and killed by the generation of reactive oxygen species. Polyphenolic compounds are known to mitigate the damaging effects of radiation.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
The natural world is a vast reservoir of exceptionally varied and inventive chemical compositions. Natural products are used as initial compounds to create combinatorial libraries by targeted modifications and then by analyzing their structure-activity connections. This stage is regarded as a crucial milestone in drug discovery and development.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.
ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China.
Introducing multiple physical cues to control cell behaviors effectively is considered as a promising strategy in developing bioactive wound dressings. Silk nanofiber-based cryogels are developed to favor angiogenesis and tissue regeneration through tuning hydrated state, microporous structure, and mechanical property, but remained a challenge to endow with more physical cues. Here, β-sheet rich silk nanofibers are used to develop cryogels with nanopore structure.
View Article and Find Full Text PDFMed Gas Res
June 2025
Research Consultant, Water Fuel Engineering, Wakefield, UK.
Hydrogen (H2), the simplest and most ubiquitous molecule in the universe, has garnered significant scientific interest over the past two decades because of its potential as an effective antioxidant and anti-inflammatory agent. Traditionally considered inert, H2 is now being re-evaluated for its unique bioactive properties. H2 selectively neutralizes reactive oxygen and nitrogen species, mitigating oxidative stress without disrupting essential cellular functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!