Amid the escalating integration of renewable energy sources, the demand for grid energy storage solutions, including non-aqueous organic redox flow batteries (oRFBs), has become ever more pronounced. oRFBs face a primary challenge of irreversible capacity loss attributed to the crossover of redox-active materials between half-cells. A possible solution for the crossover challenge involves utilization of bipolar electrolytes that act as both the catholyte and anolyte. Identifying such molecules poses several challenges as it requires a delicate balance between the stability of both oxidation states and energy density, which is influenced by the separation between the two redox events. We report the development of a diaminotriazolium redox-active core capable of producing two electronically distinct persistent radical species with typically extreme reduction potentials ( < -2 V, > +1 V, vs Fc) and up to 3.55 V separation between the two redox events. Structure-property optimization studies allowed us to identify factors responsible for fine-tuning of potentials for both redox events, as well as separation between them. Mechanistic studies revealed two primary decomposition pathways for the neutral radical charged species and one for the radical biscation. Additionally, statistical modeling provided evidence for the molecular descriptors to allow identification of the structural features responsible for stability of radical species and to propose more stable analogues.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c05799DOI Listing

Publication Analysis

Top Keywords

redox events
12
bipolar electrolytes
8
redox flow
8
flow batteries
8
separation redox
8
radical species
8
redox
5
development modular
4
modular nitrenium
4
nitrenium bipolar
4

Similar Publications

Curcumin Improves Hippocampal Cell Bioenergetics, Redox and Inflammatory Markers, and Synaptic Proteins, Regulating Mitochondrial Calcium Homeostasis.

Neurotox Res

January 2025

Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile.

Mitochondria produces energy through oxidative phosphorylation (OXPHOS), maintaining calcium homeostasis, survival/death cell signaling mechanisms, and redox balance. These mitochondrial functions are especially critical for neurons. The hippocampus is crucial for memory formation in the brain, which is a process with high mitochondrial function demand.

View Article and Find Full Text PDF

Sodium aescinate-induced hepatotoxicity via ATF4/GSH/GPX4 axis-mediated ferroptosis.

Sci Rep

January 2025

School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi, P.R. China.

Sodium aescinate (SA), a natural plant extract with various bioactivities, is widely used to treat oedema and inflammation in clinics. However, adverse events, including liver injury, kidney injury, and phlebitis, have been reported in patients with SA in recent years. In this study, we used BALB/c mice and L02 cells to evaluate the role of ferroptosis in SA-induced liver injury.

View Article and Find Full Text PDF

Disaccharide trehalose has been proven in many cases to be particularly effective in preserving the functional and structural integrity of biological macromolecules. In this work, we studied its effect on the electron transfer reactions that occur in the chromatophores of the photosynthetic bacterium . In the presence of a high concentration of trehalose, following the activation of the photochemistry by flashes of light, a slowdown of the electrogenic reactions related to the activity of the photosynthetic reaction center and cytochtome (cyt) complexes is observable.

View Article and Find Full Text PDF

: A large amount of recent evidence suggests that cellular inability to consume oxygen could play a notable part in promoting sepsis as a consequence of mitochondrial dysfunction and oxidative stress. The latter could, in fact, represent a fundamental stage in the evolution of the "natural history" of sepsis. Following a study previously conducted by the same working group on heart samples, the present research project aims to evaluate, through an immunohistochemical study, the existence and/or extent of oxidative stress in the brains of subjects who died due to sepsis and define, after reviewing the literature, its contribution to the septic process to support the use of medications aimed at correcting redox anomalies in the management of septic patients.

View Article and Find Full Text PDF

Antioxidant Responses and Redox Regulation Within Plant-Beneficial Microbe Interaction.

Antioxidants (Basel)

December 2024

Copenhagen Plant Science Centre, Faculty of Science, University of Copenhagen, 1870 Frederiksberg, Denmark.

The increase in extreme climate events associated with global warming is a great menace to crop productivity nowadays. In addition to abiotic stresses, warmer conditions favor the spread of infectious diseases affecting plant performance. Within this context, beneficial microbes constitute a sustainable alternative for the mitigation of the effects of climate change on plant growth and productivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!