https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=38963031&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 389630312024072220240722
1365-294X33152024AugMolecular ecologyMol EcolGenome resequencing reveals population divergence and local adaptation of blacklegged ticks in the United States.e17460e1746010.1111/mec.17460Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.© 2024 The Author(s). Molecular Ecology published by John Wiley & Sons Ltd.SchovilleSean DSD0000-0001-7364-434XDepartment of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA.BurkeRussell LRLDepartment of Biology, Hofstra University, Hempstead, New York, USA.DongDahn-YoungDYDepartment of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA.GinsbergHoward SHSUnited States Geological Survey, Eastern Ecological Science Center, Woodward Hall - PSE, Field Station at the University of Rhode Island, Kingston, Rhode Island, USA.MaestasLaurenLCattle Fever Tick Research Laboratory, USDA, Agricultural Research Service, Edinburg, Texas, USA.PaskewitzSusan MSMDepartment of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA.TsaoJean IJIDepartment of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA.Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA.engEEID EF-0914476Directorate for Biological SciencesU01 CK000505CCCDC HHSUnited StatesWIS04035U.S. Department of AgricultureE20193274-00Michigan Department of Health and Human ServicesU01 CK000505CCCDC HHSUnited StatesJournal Article20240704
EnglandMol Ecol92144780962-1083IMAnimalsIxodesgeneticsGenetics, PopulationGene FlowUnited StatesWhole Genome SequencingAdaptation, PhysiologicalgeneticsGenetic VariationIxodes scapularisLyme diseasedeer ticksnatural selectionpopulation genomics
20243122023342024415202472212432024741242202474643ppublish3896303110.1111/mec.17460REFERENCESAlachiotis, N., Stamatakis, A., & Pavlidis, P. (2012). OmegaPlus: A scalable tool for rapid detection of selective sweeps in whole‐genome datasets. Bioinformatics, 28(17), 2274–2275.Araya‐Anchetta, A., Busch, J. D., Scoles, G. A., & Wagner, D. M. (2015). Thirty years of tick population genetics: A comprehensive review. Infection, Genetics and Evolution, 29, 164–179.Arsnoe, I., Tsao, J. I., & Hickling, G. J. (2019). Nymphal Ixodes scapularis questing behavior explains geographic variation in Lyme borreliosis risk in the eastern United States. Ticks and Tick‐borne Diseases, 10(3), 553–563.Binetruy, F., Dupraz, M., Buysse, M., & Duron, O. (2019). Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasites & Vectors, 12(1), 1–10.Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170Bourgeois, Y. X. C., & Warren, B. H. (2021). An overview of current population genomics methods for the analysis of whole‐genome resequencing data in eukaryotes. Molecular Ecology, 30(23), 6036–6071. https://doi.org/10.1111/mec.15989Bradburd, G. S., Coop, G. M., & Ralph, P. L. (2018). Inferring continuous and discrete population genetic structure across space. Genetics, 210(1), 33–52.Brites, D., Brena, C., Ebert, D., & Du Pasquier, L. (2013). More than one way to produce protein diversity: Duplication and limited alternative splicing of an adhesion molecule gene in basal arthropods. Evolution, 67(10), 2999–3011.Broad Institute. (2019). Picard Toolkit: Broad Institute, GitHub Repository. https://broadinstitute.github.io/picard/Browning, B. L., & Browning, S. R. (2009). A unified approach to genotype imputation and haplotype‐phase inference for large data sets of trios and unrelated individuals. The American Journal of Human Genetics, 84(2), 210–223.Burtis, J. C., Sullivan, P., Levi, T., Oggenfuss, K., Fahey, T. J., & Ostfeld, R. S. (2016). The impact of temperature and precipitation on blacklegged tick activity and Lyme disease incidence in endemic and emerging regions. Parasites & Vectors, 9(1), 606. https://doi.org/10.1186/s13071‐016‐1894‐6Caye, K., Jay, F., Michel, O., & François, O. (2018). Fast inference of individual admixture coefficients using geographic data. The Annals of Applied Statistics, 12(1), 586–608.Caye, K., Jumentier, B., Lepeule, J., & François, O. (2019). LFMM 2: Fast and accurate inference of gene‐environment associations in genome‐wide studies. Molecular Biology and Evolution, 36(4), 852–860.Centers for Disease Control and Prevention. (2019). Tickborne disease surveillance data summary. National Center for Emerging and Zoonotic Infectious Diseases, Division of Vector‐Borne Diseases. https://www.cdc.gov/ticks/data‐summary/index.htmlChang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second‐generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4(1), 7.Cheng, J. Y., Stern, A. J., Racimo, F., & Nielsen, R. (2022). Detecting selection in multiple populations by modeling ancestral admixture components. Molecular Biology and Evolution, 39(1), msab294.Cingolani, P., Patel, V. M., Coon, M., Nguyen, T., Land, S. J., Ruden, D. M., & Lu, X. (2012). Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Frontiers in Genetics, 3, 35.Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso‐2; iso‐3. Fly, 6(2), 80–92.Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., & McCabe, A. M. (2009). The last glacial maximum. Science, 325(5941), 710–714.Clow, K. M., Leighton, P. A., Ogden, N. H., Lindsay, L. R., Michel, P., Pearl, D. L., & Jardine, C. M. (2017). Northward range expansion of Ixodes scapularis evident over a short timescale in Ontario, Canada. PLoS One, 12(12), e0189393.Crisci, J. L., Poh, Y.‐P., Mahajan, S., & Jensen, J. D. (2013). The impact of equilibrium assumptions on tests of selection. Frontiers in Genetics, 4, 235.Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools. Bioinformatics, 27, 2156–2158.Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., & Davies, R. M. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008.Daniels, T. J., & Fish, D. (1990). Spatial distribution and dispersal of unfed larval Ixodes dammini (Acari: Ixodidae) in southern New York. Environmental Entomology, 19(4), 1029–1033.Davies, B., Rosendale, A. J., Gantz, J. D., Lee, R. E., Denlinger, D. L., & Benoit, J. B. (2021). Cross‐tolerance and transcriptional shifts underlying abiotic stress in the seabird tick, Ixodes uriae. Polar Biology, 44(7), 1379–1389. https://doi.org/10.1007/s00300‐021‐02887‐4Decrem, Y., Beaufays, J., Blasioli, V., Lahaye, K., Brossard, M., Vanhamme, L., & Godfroid, E. (2008). A family of putative metalloproteases in the salivary glands of the tick Ixodes ricinus. The FEBS Journal, 275(7), 1485–1499.Díaz‐Sánchez, S., Estrada‐Peña, A., Cabezas‐Cruz, A., & de la Fuente, J. (2019). Evolutionary insights into the tick hologenome. Trends in Parasitology, 35(9), 725–737.Diuk‐Wasser, M. A., VanAcker, M. C., & Fernandez, M. P. (2021). Impact of land use changes and habitat fragmentation on the eco‐epidemiology of tick‐borne diseases. Journal of Medical Entomology, 58(4), 1546–1564.Diuk‐Wasser, M. A., Vourc'h, G., Cislo, P., Hoen, A. G., Melton, F., Hamer, S. A., Rowland, M., Cortinas, R., Hickling, G. J., & Tsao, J. I. (2010). Field and climate‐based model for predicting the density of host‐seeking nymphal Ixodes scapularis, an important vector of tick‐borne disease agents in the eastern United States. Global Ecology and Biogeography, 19(4), 504–514.Eisen, L., & Eisen, R. J. (2023). Changes in the geographic distribution of the blacklegged tick, Ixodes scapularis, in the United States. Ticks and Tick‐borne Diseases, 14(6), 102233.Eisen, R. J., & Eisen, L. (2018). The blacklegged tick, Ixodes scapularis: An increasing public health concern. Trends in Parasitology, 34(4), 295–309. https://doi.org/10.1016/j.pt.2017.12.006Ellegren, H. (2014). Genome sequencing and population genomics in non‐model organisms. Trends in Ecology & Evolution, 29(1), 51–63.Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. https://doi.org/10.1093/bioinformatics/btw354Falco, R. C., McKenna, D. F., Daniels, T. J., Nadelman, R. B., Nowakowski, J., Fish, D., & Wormser, G. P. (1999). Temporal relation between Ixodes scapularis abundance and risk for Lyme disease associated with erythema migrans. American Journal of Epidemiology, 149(8), 771–776. https://doi.org/10.1093/oxfordjournals.aje.a009886Fleshman, A. C., Graham, C. B., Maes, S. E., Foster, E., & Eisen, R. J. (2021). Reported county‐level distribution of Lyme disease spirochetes, Borrelia burgdorferi sensu stricto and Borrelia mayonii (Spirochaetales: Spirochaetaceae), in host‐seeking Ixodes scapularis and Ixodes pacificus ticks (Acari: Ixodidae) in the contiguous United States. Journal of Medical Entomology, 58(3), 1219–1233.Frederick, J. C., Thompson, A. T., Sharma, P., Dharmarajan, G., Ronai, I., Pesapane, R., Smith, R. C., Sundstrom, K. D., Tsao, J. I., & Tuten, H. C. (2023). Phylogeography of the blacklegged tick (Ixodes scapularis) throughout the USA identifies candidate loci for differences in vectorial capacity. Molecular Ecology, 32(12), 3133–3149. https://doi.org/10.1111/mec.16921Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6(8), 925–929.Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. (2014). Fast and efficient estimation of individual ancestry coefficients. Genetics, 196(4), 973–983.Frichot, E., Schoville, S., Bouchard, G., & François, O. (2012). Correcting principal component maps for effects of spatial autocorrelation in population genetic data. Frontiers in Genetics, 3, 00254. https://doi.org/10.3389/fgene.2012.00254Frichot, E., Schoville, S., Bouchard, G., & François, O. (2013). Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution, 30(7), 1687–1699. https://doi.org/10.1093/molbev/mst063Frichot, E., Schoville, S. D., de Villemereuil, P., Gaggiotti, O. E., & François, O. (2015). Detecting adaptive evolution based on association with ecological gradients: Orientation matters! Heredity, 115(1), 22–28.Fumagalli, M. (2013). Assessing the effect of sequencing depth and sample size in population genetics inferences. PLoS One, 8(11), e79667. https://doi.org/10.1371/journal.pone.0079667Ganfornina, M. D., & Sánchez, D. (1999). Generation of evolutionary novelty by functional shift. BioEssays, 21(5), 432–439.Gardner, A. M., Pawlikowski, N. C., Hamer, S. A., Hickling, G. J., Miller, J. R., Schotthoefer, A. M., Tsao, J. I., & Allan, B. F. (2020). Landscape features predict the current and forecast the future geographic spread of Lyme disease. Proceedings of the Royal Society B, 287(1941), 20202278.Gatewood, A. G., Liebman, K. A., Vourc'h, G., Bunikis, J., Hamer, S. A., Cortinas, R., Melton, F., Cislo, P., Kitron, U., & Tsao, J. (2009). Climate and tick seasonality are predictors of Borrelia burgdorferi genotype distribution. Applied and Environmental Microbiology, 75(8), 2476–2483.Ginsberg, H. S., Albert, M., Acevedo, L., Dyer, M. C., Arsnoe, I. M., Tsao, J. I., Mather, T. N., & LeBrun, R. A. (2017). Environmental factors affecting survival of immature Ixodes scapularis and implications for geographical distribution of Lyme disease: The climate/behavior hypothesis. PLoS One, 12(1), e0168723.Ginsberg, H. S., Hickling, G. J., Burke, R. L., Ogden, N. H., Beati, L., LeBrun, R. A., Arsnoe, I. M., Gerhold, R., Han, S., & Jackson, K. (2021). Why Lyme disease is common in the northern US, but rare in the south: The roles of host choice, host‐seeking behavior, and tick density. PLoS Biology, 19(1), e3001066.Greay, T. L., Gofton, A. W., Paparini, A., Ryan, U. M., Oskam, C. L., & Irwin, P. J. (2018). Recent insights into the tick microbiome gained through next‐generation sequencing. Parasites & Vectors, 11(1), 1–14.Greischar, M. A., & Koskella, B. (2007). A synthesis of experimental work on parasite local adaptation. Ecology Letters, 10(5), 418–434.Guerra, M., Walker, E., Jones, C., Paskewitz, S., Cortinas, M. R., Stancil, A., Beck, L., Bobo, M., & Kitron, U. (2002). Predicting the risk of Lyme disease: Habitat suitability for Ixodes scapularis in the north central United States. Emerging Infectious Diseases, 8(3), 289–297.Gulia‐Nuss, M., Nuss, A. B., Meyer, J. M., Sonenshine, D. E., Roe, R. M., Waterhouse, R. M., Sattelle, D. B., De La Fuente, J., Ribeiro, J. M., & Megy, K. (2016). Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications, 7(1), 1–13.Hamer, S. A., Tsao, J. I., Walker, E. D., & Hickling, G. J. (2010). Invasion of the Lyme disease vector Ixodes scapularis: Implications for Borrelia burgdorferi endemicity. EcoHealth, 7, 47–63.Han, E., Sinsheimer, J. S., & Novembre, J. (2013). Characterizing bias in population genetic inferences from low‐coverage sequencing data. Molecular Biology and Evolution, 31(3), 723–735.Hart, E., & Bell, K. (2015). prism: Download data from the Oregon prism project. R package version 0.2.1.Hassell, J. M., Begon, M., Ward, M. J., & Fèvre, E. M. (2017). Urbanization and disease emergence: Dynamics at the wildlife–livestock–human interface. Trends in Ecology & Evolution, 32(1), 55–67.Hijmans, R., van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., & Jonathan, A. (2017). Raster: Geographic data analysis and modeling. R Package Version 3.4‐8.Hill, C. A., Sharan, S., & Watts, V. J. (2018). Genomics, GPCRs and new targets for the control of insect pests and vectors. Current Opinion in Insect Science, 30, 99–106.Humphrey, P. T., Caporale, D. A., & Brisson, D. (2010). Uncoordinated phylogeography of Borrelia burgdorferi and its tick vector, Ixodes scapularis. Evolution: International Journal of Organic Evolution, 64(9), 2653–2663.Hunter, D. J., Torkelson, J. L., Bodnar, J., Mortazavi, B., Laurent, T., Deason, J., Thephavongsa, K., & Zhong, J. (2015). The rickettsia endosymbiont of Ixodes pacificus contains all the genes of de novo folate biosynthesis. PLoS One, 10(12), e0144552.Jones, C., & Kitron, U. (2000). Populations of Ixodes scapularis (Acari: Ixodidae) are modulated by drought at a Lyme disease focus in Illinois. Journal of Medical Entomology, 37(3), 408–415.Jongejan, F., & Uilenberg, G. (2004). The global importance of ticks. Parasitology, 129(S1), S3–S14.Keightley, P. D., Ness, R. W., Halligan, D. L., & Haddrill, P. R. (2014). Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full‐sib family. Genetics, 196(1), 313–320.Keirans, J. E., Hutcheson, H. J., Durden, L. A., & Klompen, J. (1996). Ixodes (Ixodes) scapularis (Acari: Ixodidae): Redescription of all active stages, distribution, hosts, geographical variation, and medical and veterinary importance. Journal of Medical Entomology, 33(3), 297–318.Khatchikian, C. E., Prusinski, M. A., Stone, M., Backenson, P. B., Wang, I. N., Foley, E., Seifert, S. N., Levy, M. Z., & Brisson, D. (2015). Recent and rapid population growth and range expansion of the Lyme disease tick vector, Ixodes scapularis, in North America. Evolution, 69(7), 1678–1689.Kim, T. K., Tirloni, L., Pinto, A. F. M., Moresco, J., Yates, J. R., III, da Silva Vaz, I., Jr., & Mulenga, A. (2016). Ixodes scapularis tick saliva proteins sequentially secreted every 24 h during blood feeding. PLoS Neglected Tropical Diseases, 10(1), e0004323. https://doi.org/10.1371/journal.pntd.0004323Kopsco, H. L., Gronemeyer, P., Mateus‐Pinilla, N., & Smith, R. L. (2023). Current and future habitat suitability models for four ticks of medical concern in Illinois, USA. Insects, 14(3), 213.Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: Analysis of next generation sequencing data. BMC Bioinformatics, 15, 356.Krakowetz, C. N., Lindsay, L. R., & Chilton, N. B. (2014). Genetic variation in the mitochondrial 16S ribosomal RNA gene of Ixodes scapularis (Acari: Ixodidae). Parasites & Vectors, 7(1), 1–15.Kurtti, T. J., Felsheim, R. F., Burkhardt, N. Y., Oliver, J. D., Heu, C. C., & Munderloh, U. G. (2015). Rickettsia buchneri sp. nov., a rickettsial endosymbiont of the blacklegged tick Ixodes scapularis. International Journal of Systematic and Evolutionary Microbiology, 65(Pt 3), 965–970.Lantos, P. M., Tsao, J., Nigrovic, L. E., Auwaerter, P. G., Fowler, V. G., Ruffin, F., Foster, E., & Hickling, G. (2017). Geographic expansion of Lyme disease in Michigan, 2000–2014. Paper presented at the Open forum infectious diseases.Larsen, A. E., MacDonald, A. J., & Plantinga, A. J. (2014). Lyme disease risk influences human settlement in the wildland–urban interface: Evidence from a longitudinal analysis of counties in the northeastern United States. The American Journal of Tropical Medicine and Hygiene, 91(4), 747–755.Leung, C. L., Green, K. J., & Liem, R. K. H. (2002). Plakins: A family of versatile cytolinker proteins. Trends in Cell Biology, 12(1), 37–45. https://doi.org/10.1016/S0962‐8924(01)02180‐8Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM. arXiv. https://arxiv.org/abs/1303.3997Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with burrows‐wheeler transform. Bioinformatics, 25(14), 1754–1760.Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.Lillis, A. P., Van Duyn, L. B., Murphy‐Ullrich, J. E., & Strickland, D. K. (2008). LDL receptor‐related protein 1: Unique tissue‐specific functions revealed by selective gene knockout studies. Physiological Reviews, 88(3), 887–918. https://doi.org/10.1152/physrev.00033.2007Linck, E., & Battey, C. (2019). Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Molecular Ecology Resources, 19(3), 639–647.Liu, X., & Fu, Y.‐X. (2020). Stairway plot 2: Demographic history inference with folded SNP frequency spectra. Genome Biology, 21(1), 1–9.Lively, C. (1999). Migration, virulence, and the geographic mosaic of adaptation by parasites. The American Naturalist, 153(S5), S34–S47.Mather, N., Traves, S. M., & Ho, S. Y. (2020). A practical introduction to sequentially Markovian coalescent methods for estimating demographic history from genomic data. Ecology and Evolution, 10(1), 579–589.Maynard Smith, J., & Haigh, J. (1974). The hitch‐hiking effect of a favourable gene. Genetics Research, 23, 23–35.Mazet, O., Rodríguez, W., Grusea, S., Boitard, S., & Chikhi, L. (2016). On the importance of being structured: Instantaneous coalescence rates and human evolution—Lessons for ancestral population size inference? Heredity, 116(4), 362–371.McCoy, K. (2008). The population genetic structure of vectors and our understanding of disease epidemiology. Parasite, 15(3), 444–448.Mechai, S., Margos, G., Feil, E. J., Lindsay, L. R., Michel, P., Kotchi, S. O., & Ogden, N. H. (2018). Evidence for an effect of landscape connectivity on Borrelia burgdorferi sensu stricto dispersion in a zone of range expansion. Ticks and Tick‐borne Diseases, 9(6), 1407–1415. https://doi.org/10.1016/j.ttbdis.2018.07.001Meisner, J., & Albrechtsen, A. (2018). Inferring population structure and admixture proportions in low‐depth NGS data. Genetics, 210(2), 719–731.Mi, H., Muruganujan, A., & Thomas, P. D. (2013). PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research, 41, D377–D386. https://doi.org/10.1093/nar/gks1118Miller, J. R., Koren, S., Dilley, K. A., Harkins, D. M., Stockwell, T. B., Shabman, R. S., & Sutton, G. G. (2018). A draft genome sequence for the Ixodes scapularis cell line, ISE6. F1000Research, 7, 297. https://doi.org/10.12688/f1000research.13635.1Montano, V., Didelot, X., Foll, M., Linz, B., Reinhardt, R., Suerbaum, S., Moodley, Y., & Jensen, J. D. (2015). Worldwide population structure, long‐term demography, and local adaptation of Helicobacter pylori. Genetics, 200(3), 947–963.Morens, D. M., Folkers, G. K., & Fauci, A. S. (2004). The challenge of emerging and re‐emerging infectious diseases. Nature, 430(6996), 242–249.Morin, P. A., Martien, K. K., & Taylor, B. L. (2009). Assessing statistical power of SNPs for population structure and conservation studies. Molecular Ecology Resources, 9(1), 66–73. https://doi.org/10.1111/j.1755‐0998.2008.02392.xMuratspahić, E., Monjon, E., Duerrauer, L., Rogers, S. M., Cullen, D. A., Vanden Broeck, J., & Gruber, C. W. (2020). Oxytocin/vasopressin‐like neuropeptide signaling in insects. Vitamins and Hormones, 113, 29–53. https://doi.org/10.1016/bs.vh.2019.08.011Nadachowska‐Brzyska, K., Burri, R., Smeds, L., & Ellegren, H. (2016). PSMC analysis of effective population sizes in molecular ecology and its application to black‐and‐white Ficedula flycatchers. Molecular Ecology, 25(5), 1058–1072.Narasimhan, S., & Fikrig, E. (2015). Tick microbiome: The force within. Trends in Parasitology, 31(7), 315–323.Nelder, M. P., Russell, C., Lindsay, L. R., Dhar, B., Patel, S. N., Johnson, S., Moore, S., Kristjanson, E., Li, Y., & Ralevski, F. (2014). Population‐based passive tick surveillance and detection of expanding foci of blacklegged ticks Ixodes scapularis and the Lyme disease agent Borrelia burgdorferi in Ontario, Canada. PLoS One, 9(8), e105358.Nelson, D. R. (2013). A world of cytochrome P450s. Philosophical Transactions of the Royal Society, B: Biological Sciences, 368(1612), 20120430.Ng, T. H., & Kurtz, J. (2020). Dscam in immunity: A question of diversity in insects and crustaceans. Developmental & Comparative Immunology, 105, 103539. https://doi.org/10.1016/j.dci.2019.103539Norris, D. E., Klompen, J., Keirans, J. E., & Black, W. C., IV. (1996). Population genetics of Ixodes scapularis (Acari: Ixodidae) based on mitochondrial 16S and 12S genes. Journal of Medical Entomology, 33(1), 78–89.Novas, R., Cardenas‐Rodriguez, M., Irigoín, F., & Badano, J. L. (2015). Bardet–Biedl syndrome: Is it only cilia dysfunction? FEBS Letters, 589(22), 3479–3491. https://doi.org/10.1016/j.febslet.2015.07.031Ogden, N., Bigras‐Poulin, M., Hanincova, K., Maarouf, A., O'callaghan, C., & Kurtenbach, K. (2008). Projected effects of climate change on tick phenology and fitness of pathogens transmitted by the north American tick Ixodes scapularis. Journal of Theoretical Biology, 254(3), 621–632.Ogden, N. H., Ben Beard, C., Ginsberg, H. S., & Tsao, J. I. (2021). Possible effects of climate change on ixodid ticks and the pathogens they transmit: Predictions and observations. Journal of Medical Entomology, 58(4), 1536–1545.Ogden, N. H., Pang, G., Ginsberg, H. S., Hickling, G. J., Burke, R. L., Beati, L., & Tsao, J. I. (2018). Evidence for geographic variation in life‐cycle processes affecting phenology of the Lyme disease vector Ixodes scapularis (Acari: Ixodidae) in the United States. Journal of Medical Entomology, 55(6), 1386–1401.Ohno, S. (1970). Evolution by gene duplication. Springer‐Verlag.Oliver, J. D., Bennett, S. W., Beati, L., & Bartholomay, L. C. (2017). Range expansion and increasing Borrelia burgdorferi infection of the tick Ixodes scapularis (Acari: Ixodidae) in Iowa, 1990–2013. Journal of Medical Entomology, 54(6), 1727–1734.Oliver, J. H., Jr., Owsley, M. R., Hutcheson, H. J., James, A. M., Chen, C., Irby, W. S., Dotson, E. M., & Mclain, D. K. (1993). Conspecificity of the ticks Ixodes scapularis and I. Dammini (Acari: Ixodidae). Journal of Medical Entomology, 30(1), 54–63.Oppold, A. M., & Pfenninger, M. (2017). Direct estimation of the spontaneous mutation rate by short‐term mutation accumulation lines in Chironomus riparius. Evolution Letters, 1(2), 86–92.Ostfeld, R. S., Glass, G. E., & Keesing, F. (2005). Spatial epidemiology: An emerging (or re‐emerging) discipline. Trends in Ecology & Evolution, 20(6), 328–336.Pepin, K. M., Eisen, R. J., Mead, P. S., Piesman, J., Fish, D., Hoen, A. G., Barbour, A. G., Hamer, S., & Diuk‐Wasser, M. A. (2012). Geographic variation in the relationship between human Lyme disease incidence and density of infected host‐seeking Ixodes scapularis nymphs in the eastern United States. The American Journal of Tropical Medicine and Hygiene, 86(6), 1062–1071.Perez, M. F., Franco, F. F., Bombonato, J. R., Bonatelli, I. A. S., Khan, G., Romeiro‐Brito, M., Fegies, A. C., Ribeiro, P. M., Silva, G. A. R., & Moraes, E. M. (2018). Assessing population structure in the face of isolation by distance: Are we neglecting the problem? Diversity and Distributions, 24(12), 1883–1889. https://doi.org/10.1111/ddi.12816Perner, J., Provazník, J., Schrenková, J., Urbanová, V., Ribeiro, J. M. C., & Kopáček, P. (2016). RNA‐seq analyses of the midgut from blood‐ and serum‐fed Ixodes ricinus ticks. Scientific Reports, 6(1), 36695. https://doi.org/10.1038/srep36695Price, D. C., Brennan, R. N., Wagner, N. E., & Egizi, A. M. (2021). Comparative hologenomics of two Ixodes scapularis tick populations in New Jersey. PeerJ, 9, e12313.PRISM Climate Group. (2022). Oregon State University. https://prism.oregonstate.eduQiu, W.‐G., Dykhuizen, D. E., Acosta, M. S., & Luft, B. J. (2002). Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the northeastern United States. Genetics, 160(3), 833–849.Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841–842. https://doi.org/10.1093/bioinformatics/btq033R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901–904.Rannala, B., & Yang, Z. (2003). Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics, 164, 1645–1656.Raymo, M. (1997). The timing of major climate terminations. Paleoceanography, 12(4), 577–585.Rich, S. M., Caporale, D. A., Telford, S., 3rd, Kocher, T. D., Hartl, D. L., & Spielman, A. (1995). Distribution of the Ixodes ricinus‐like ticks of eastern North America. Proceedings of the National Academy of Sciences of the United States of America, 92(14), 6284–6288.Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F‐statistics under isolation by distance. Genetics, 145, 1219–1228.Sakamoto, J. M., Goddard, J., & Rasgon, J. L. (2014). Population and demographic structure of Ixodes scapularis say in the eastern United States. PLoS One, 9(7), e101389.Schoville, S. D., Bonin, A., François, O., Lobréaux, S., Melodelima, C., & Manel, S. (2012). Adaptive genetic variation on the landscape: Methods and cases. Annual Review of Ecology, Evolution, and Systematics, 43, 23–43. https://doi.org/10.1146/annurev‐ecolsys‐110411‐160248Schwartz, A. M., Hinckley, A. F., Mead, P. S., Hook, S. A., & Kugeler, K. J. (2017). Surveillance for Lyme disease—United States, 2008–2015. MMWR Surveillance Summaries, 66(22), 1–12.Schwartz, A. M., Shankar, M. B., Kugeler, K. J., Max, R. J., Hinckley, A. F., Meltzer, M. I., & Nelson, C. A. (2020). Epidemiology and cost of Lyme disease‐related hospitalizations among patients with employer‐sponsored health insurance—United States, 2005–2014. Zoonoses and Public Health, 67(4), 407–415.Schwartz, M., & McKelvey, K. (2009). Why sampling scheme matters: The effect of sampling scheme on landscape genetic results. Conservation Genetics, 10(2), 441–452.Shingate, P., Ravi, V., Prasad, A., Tay, B.‐H., Garg, K. M., Chattopadhyay, B., Yap, L.‐M., Rheindt, F. E., & Venkatesh, B. (2020). Chromosome‐level assembly of the horseshoe crab genome provides insights into its genome evolution. Nature Communications, 11(1), 2322. https://doi.org/10.1038/s41467‐020‐16180‐1Sionneau, T., Bout‐Roumazeilles, V., Meunier, G., Kissel, C., Flower, B., Bory, A., & Tribovillard, N. (2013). Atmospheric re‐organization during marine isotope stage 3 over the north American continent: Sedimentological and mineralogical evidence from the Gulf of Mexico. Quaternary Science Reviews, 81, 62–73.Soltis, D. E., Morris, A. B., McLachlan, J. S., Manos, P. S., & Soltis, P. S. (2006). Comparative phylogeography of unglaciated eastern North America. Molecular Ecology, 15(14), 4261–4293.Spielman, A., Clifford, C. M., Piesman, J., & Corwin, M. D. (1979). Human babesiosis on Nantucket Island, USA: Description of the vector, Ixodes (Ixodes) dammini, n. sp.(Acarina: Ixodidae). Journal of Medical Entomology, 15(3), 218–234.Stafford, K. C., III. (1994). Survival of immature Ixodes scapularis (Acari: Ixodidae) at different relative humidities. Journal of Medical Entomology, 31(2), 310–314.Stewart, P. E., & Bloom, M. E. (2020). Sharing the ride: Ixodes scapularis symbionts and their interactions. Frontiers in Cellular and Infection Microbiology, 10, 142.Storey, J., Bass, A., Dabney, A., & Robinson, D. (2021). Qvalue: Q‐value estimation for false discovery rate control. http://github.com/jdstorey/qvalueSwei, A., Couper, L. I., Coffey, L. L., Kapan, D., & Bennett, S. (2019). (Patterns, drivers, and challenges of vector‐borne disease emergence. Vector‐Borne and Zoonotic Diseases, 20(3), 159–170.Tauber, M. J., & Tauber, C. A. (1976). Insect seasonality: Diapause maintenance, termination, and postdiapause development. Annual Review of Entomology, 21(1), 81–107.Taylor, L. H., Latham, S. M., & Woolhouse, M. E. (2001). Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1411), 983–989.Terhorst, J., Kamm, J. A., & Song, Y. S. (2017). Robust and scalable inference of population history from hundreds of unphased whole genomes. Nature Genetics, 49(2), 303–312.Thompson, J. N. (1999). Specific hypotheses on the geographic mosaic of coevolution. The American Naturalist, 153(S5), S1–S14.Tietjen, M., Esteve‐Gasent, M. D., Li, A. Y., & Medina, R. F. (2020). A comparative evaluation of northern and southern Ixodes scapularis questing height and hiding behaviour in the USA. Parasitology, 147(13), 1569–1576.Tokarz, R., Tagliafierro, T., Sameroff, S., Cucura, D. M., Oleynik, A., Che, X., Jain, K., & Lipkin, W. I. (2019). Microbiome analysis of Ixodes scapularis ticks from New York and Connecticut. Ticks and Tick‐borne Diseases, 10(4), 894–900.Tree, M. O., Londono‐Renteria, B., Troupin, A., Clark, K. M., Colpitts, T. M., & Conway, M. J. (2019). Dengue virus reduces expression of low‐density lipoprotein receptor‐related protein 1 to facilitate replication in Aedes aegypti. Scientific Reports, 9(1), 6352. https://doi.org/10.1038/s41598‐019‐42803‐9Tsao, J. I., Hamer, S. A., Han, S., Sidge, J. L., & Hickling, G. J. (2021). The contribution of wildlife hosts to the rise of ticks and tick‐borne diseases in North America. Journal of Medical Entomology, 58(4), 1565–1587.Van Zee, J., Black, W. C., Levin, M., Goddard, J., Smith, J., & Piesman, J. (2013). High SNP density in the blacklegged tick, Ixodes scapularis, the principal vector of Lyme disease spirochetes. Ticks and Tick‐borne Diseases, 4(1), 63–71. https://doi.org/10.1016/j.ttbdis.2012.07.005Van Zee, J. P., Geraci, N., Guerrero, F., Wikel, S., Stuart, J., Nene, V., & Hill, C. (2007). Tick genomics: The Ixodes genome project and beyond. International Journal for Parasitology, 37(12), 1297–1305.Van Zee, J., Piesman, J. F., Hojgaard, A., & Black, W. C., IV. (2015). Nuclear markers reveal predominantly north to south gene flow in Ixodes scapularis, the tick vector of the Lyme disease spirochete. PLoS One, 10(11), e0139630.Walter, K. S., Carpi, G., Caccone, A., & Diuk‐Wasser, M. A. (2017). Genomic insights into the ancient spread of Lyme disease across North America. Nature Ecology & Evolution, 1(10), 1569–1576.Weigand, H., & Leese, F. (2018). Detecting signatures of positive selection in non‐model species using genomic data. Zoological Journal of the Linnean Society, 184(2), 528–583.Weir, B., & Cockerham, C. (1984). Estimating F‐statistics for the analysis of population structure. Evolution, 38, 1358–1370.Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114–138.Xu, G., Wielstra, B., & Rich, S. M. (2020). Northern and southern blacklegged (deer) ticks are genetically distinct with different histories and Lyme spirochete infection rates. Scientific Reports, 10(1), 1–9.Yoder, J. A., & Spielman, A. (1992). Differential capacity of larval deer ticks (Ixodes dammini) to imbibe water from subsaturated air. Journal of Insect Physiology, 38(11), 863–869.