The synthesis of new compounds is an important pillar for the advancement of the field of chemistry and adjacent fields. In this regard, over the last decades huge efforts have been made to not only develop new molecular entities but also more efficient sustainable synthetic methodologies due to the increasing concerns over environmental sustainability. In this context, we have developed synthetic routes to novel corannulene flanked imidazolium bromide NHC precursors both in the solid-state and solution phases. Our work presents a comprehensive comparative study of mechanochemical routes and conventional solution-based methods. Green metrics and energy consumption comparison were performed for both routes revealing ball-milling generation of these compounds to be an environmentally greener technique to produce such precursors compared to conventional solvent-based methods. In addition, we have demonstrated proof-of-concept of the herein reported corannulene flanked NHCs to be robust ligands for transition metals and their ligand substitution reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202402056 | DOI Listing |
Chemistry
September 2024
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.
The synthesis of new compounds is an important pillar for the advancement of the field of chemistry and adjacent fields. In this regard, over the last decades huge efforts have been made to not only develop new molecular entities but also more efficient sustainable synthetic methodologies due to the increasing concerns over environmental sustainability. In this context, we have developed synthetic routes to novel corannulene flanked imidazolium bromide NHC precursors both in the solid-state and solution phases.
View Article and Find Full Text PDFOrg Lett
August 2022
GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain.
Addressing control over molecular machines resulting in variable output modulation by mimicking nature mechanisms is a current hot topic. The exploitation of reversibility in thiol/disulfide motifs in chemical systems flanked by nonplanar corannulene moieties capable to recognize fullerenes is presented herein. Two redox-based machines have been conceived for this purpose: an ON/OFF switch that activates its binding properties upon dimerization and a self-resetting (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!