A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unraveling the effects of geometrical parameters on dynamic impact responses of graphene reinforced polymer nanocomposites using coarse-grained molecular dynamics simulations. | LitMetric

Unraveling the effects of geometrical parameters on dynamic impact responses of graphene reinforced polymer nanocomposites using coarse-grained molecular dynamics simulations.

Phys Chem Chem Phys

National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Center for Composite Materials, Harbin Institute of Technology, Harbin, People's Republic of China.

Published: July 2024

Nacre plays an important role in bionic design due to its light weight, high strength, and structure-function integration. The key to elucidate its reinforcing and toughening mechanisms is to truly characterize its multi-layer structure and properties. In this work, the dynamic impact responses of graphene reinforced polymer nanocomposites with a unique brick-and-mortar structure are investigated using coarse-grained molecular dynamics simulations, in which the interfacial coarse-grained force field between graphene and the polymer matrix is derived by the energy matching approach. The influences of various geometrical parameters on dynamic impact responses of the nanocomposites are studied, including the interlayer distance, lateral distance, and number of graphene layers. The results demonstrate that the impact resistance of the nacre-like structure can be significantly improved by tuning the geometrical parameters of graphene layers. It is also found that the chain scission and interchain disentanglement of polymer chains are the main failure mechanisms during the perforation failure process as compared to the stretching and breaking of bonds. In addition, the microstructure analysis is performed to deeply interpret the deformation and damage mechanisms of the nanocomposites during impact. This study could be helpful for the rational design and preparation of graphene reinforced nacre-like nanocomposites with high impact resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp01242aDOI Listing

Publication Analysis

Top Keywords

geometrical parameters
12
dynamic impact
12
impact responses
12
graphene reinforced
12
parameters dynamic
8
responses graphene
8
reinforced polymer
8
polymer nanocomposites
8
coarse-grained molecular
8
molecular dynamics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!