Wavelet Coherence Analysis of Plasma Beta, Alfven Mach Number, and Magnetosonic Mach Number during Different Geomagnetic Storms.

ScientificWorldJournal

Department of Mathematics, Universidad de Alcalá, Alcalá de Henares 28805, Madrid, Spain.

Published: March 2024

We study the variation in plasma beta, Alfven Mach number, and magnetosonic Mach number during different geomagnetic storms of solar cycles 23, 24, and 25. In addition, we employ measurements of the solar wind's flow pressure, proton density, interplanetary magnetic field (IMF) along the -direction (Bz), temperature, velocity, and geomagnetic index SYM-H. Here, the wavelet coherence (WTC) approach of plasma beta, the Alfven Mach number, and the magnetosonic Mach number have been used with the symmetrical H component (SYM-H) index, which are critical indicators of the plasma behavior and magnetic field interactions. A solar CME or, much less severely, a corotating interaction region (CIR), which is formed at the leading edge of a high-speed stream, is the source of the magnetic storm. The key objective of this study is to reveal the possible dependencies of the geomagnetic indices on whether a storm is driven by a CME or CIR. For CIR-associated storms, large amplitude waves occur preferentially with the rising Alfven Mach number and plasma beta. At the same time, the magnetosonic Mach number lacks variability during the storms caused by shock on the arrival of Earth's environment. This is different for CME-driven storms, where the variations of the magnetosonic Mach number do not show much fluctuation compared to the Alfven Mach number and plasma beta. WTC between SYM-H and our derived parameters indicates periodicities between 64 and 512 minutes and noticeable regions of significantly enhanced power on November 07-09, 2004, and June 21-23, 2015. However, the magnetosonic Mach number showed a noticeable coherence with SYM-H between 64 and 250 minutes on September 06-08, 2017. Although, during March 19-21, 2021, both the Alfven Mach number and magnetosonic Mach number showed a noticeable coherence with SYM-H, plasma beta showed none. These parameters can be used in the prediction of geomagnetic storms of the category above G3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221954PMC
http://dx.doi.org/10.1155/2024/1335844DOI Listing

Publication Analysis

Top Keywords

mach number
52
magnetosonic mach
28
plasma beta
24
alfven mach
24
number magnetosonic
16
mach
13
number
13
beta alfven
12
geomagnetic storms
12
wavelet coherence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!