Chitosan, a biopolymer obtained from chitin, is known for its remarkable adsorption abilities for dyes, drugs, and fats, and its diverse array of antibacterial characteristics. This study explores the extraction and characterization of chitosan from the mycelium of . The moisture content, ash content, water binding capacity, fat binding capacity, and degree of deacetylation of the extracted chitosan were determined. The chitosan exhibited a high yield of 70%, crystallinity of 49.07%, a degree of deacetylation of 86%, and potent antimicrobial properties against both Gram-negative and Gram-positive bacteria. The study also examined the adsorption capabilities of chitosan to remove methylene blue (MB) dye by analysing specific factors like pH, reaction time, and MB concentration using the response surface model. The highest degree of MB dye removal was 91.6% at a pH of 6, a reaction time of around 60 min and an initial dye concentration of 16 ppm. This experimental design can be applied for chitosan adsorption of other organic compounds such as dyes, proteins, drugs, and fats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221422PMC
http://dx.doi.org/10.3389/fchem.2024.1353524DOI Listing

Publication Analysis

Top Keywords

degree deacetylation
12
dye removal
8
drugs fats
8
binding capacity
8
reaction time
8
chitosan
7
chitosan extraction
4
extraction yield
4
yield crystallinity
4
degree
4

Similar Publications

Chitosan (CS), derived from the partial deacetylation and hydrolysis of chitin, varies in the degree of deacetylation, molecular weight, and origin, influencing its biological effects, including antifungal properties. In plants, CS triggers immune responses and stimulates biomass growth. Previously, we found that the antifungal activity of CS was strongly dependent on its physicochemical properties.

View Article and Find Full Text PDF

A Novel cold-active chitin deacetylase from Shewanella psychrophila WP2 (SpsCDA) was overexpressed in Escherichia coli BL21 and employed for deacetylation of chitin to chitosan. The produced chitosan was characterized, and its antifungal activity was investigated against Fusarium oxysporum. The purified recombinant SpsCDA appeared as a single band on SDS-PAGE at approximately 60 kDa, and its specific activity was 92 U/mg.

View Article and Find Full Text PDF

The firmness of the two apple varieties: Idared and Pinova was similar during ripening, while it decreased significantly during 3-month storage only for Idared. Pectin-rich fractions were isolated from apple flesh tissue: water-soluble pectin (WSP), imidazole-soluble pectin (ISP), and hemicellulose-rich fractions: natively acetylated hemicelluloses (LiCl-DMSO), deacetylated hemicelluloses (KOH). It was shown that the degree of acetylation (DAc) of the hemicelluloses fraction (LiCl-DMSO) increased during apple ripening and storage, with higher values for Idared.

View Article and Find Full Text PDF

Effect of Substituents on Chitosan-Derived Sustainable Corrosion Inhibitors: Experimental and Computational Studies of Inhibition and Adsorption Performance.

Langmuir

December 2024

Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco.

This work involves the synthesis of two chitosan derivatives by reacting chitosan, extracted from shrimp shells in eastern Morocco, with 2-nitrobenzaldehyde via a Schiff base reaction. An amino derivative of chitosan was then produced by reducing the imine group created by sodium borohydride. We investigated the molecular weight (), crystallinity index (), and degree of deacetylation () of the isolated chitosan, among other characteristic features.

View Article and Find Full Text PDF

A Review of Chitosan-Based Materials for Biomedical, Food, and Water Treatment Applications.

Materials (Basel)

November 2024

Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania.

Chitosan, a natural biopolymer with excellent biocompatibility, biodegradability, and modifiable structure, has broad applications in regenerative medicine, tissue engineering, food packaging, and environmental technology. Its abundance, solubility in acidic solutions, and capacity for chemical modification make it highly adaptable for creating specialized derivatives with enhanced properties. Recent advances have demonstrated chitosan's efficacy in composite systems for tissue regeneration, drug delivery, and antimicrobial applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!