Background: For women in the first trimester, amniocentesis or chorionic villus sampling is recommended for screening. Machine learning has shown increased accuracy over time and finds numerous applications in enhancing decision-making, patient care, and service quality in nursing and midwifery. This study aims to develop an optimal learning model utilizing machine learning techniques, particularly neural networks, to predict chromosomal abnormalities and evaluate their predictive efficacy.
Methods/ Design: This cross-sectional study will be conducted in midwifery clinics in Mashhad, Iran in 2024. The data will be collected from 350 pregnant women in the high-risk group who underwent screening tests in the first trimester (between 11-14 weeks) of pregnancy. Information collected includes maternal age, BMI, smoking habits, history of trisomy 21 and other chromosomal disorders, CRL and NT levels, PAPP-A and B-HCG levels, presence of insulin-dependent diabetes, and whether the pregnancy resulted from IVF. The study follows up with the women during their clinic visits and tracks the results of amniocentesis. Sampling is based on Convenience Sampling, and data is gathered using a checklist of characteristics and screening/amniocentesis results. After preprocessing, feature extraction is conducted to identify and predict relevant features. The model is trained and evaluated using K-fold cross-validation.
Discussion: There is a growing interest in utilizing artificial intelligence methods, like machine learning and deep learning, in nursing and midwifery. This underscores the critical necessity for nurses and midwives to be well-versed in artificial intelligence methods and their healthcare applications. It can be beneficial to develop a machine learning model, specifically focusing on neural networks, for predicting chromosomal abnormalities.
Ethical Code: IR.MUMS.NURSE.REC. 1402.134.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220987 | PMC |
http://dx.doi.org/10.1186/s12978-024-01839-5 | DOI Listing |
Alzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.
Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.
Background: In Alzheimer's Disease (AD) trials, clinical scales are used to assess treatment effect in patients. Minimizing statistical uncertainty of trial outcomes is an important consideration to increase statistical power. Machine learning models can leverage baseline data to create AI-generated digital twins - individualized predictions (or prognostic scores) of how each patient's clinical outcomes may change during a trial assuming they received placebo.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
Background: The prohibitive costs of drug development for Alzheimer's Disease (AD) emphasize the need for alternative in silico drug repositioning strategies. Graph learning algorithms, capable of learning intrinsic features from complex network structures, can leverage existing databases of biological interactions to improve predictions in drug efficacy. We developed a novel machine learning framework, the PreSiBOGNN, that integrates muti-modal information to predict cognitive improvement at the subject level for precision medicine in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Imperial College London, London, United Kingdom; UK Dementia Research Institute, Care Research and Technology Centre, London, United Kingdom.
Background: Close to 23% of unplanned hospital admissions for people living with dementia (PLWD) are due to potentially preventable causes such as severe urinary tract infections (UTIs), falls, and respiratory problems. These affect the well-being of PLWD, cause stress to carers and increase pressure on healthcare services.
Method: We use routinely collected in-home sensory data to monitor nocturnal activity and sleep data.
Alzheimers Dement
December 2024
Department of Psychology & Language Sciences, University College London, London, United Kingdom.
Background: Dysphagia is an important feature of neurodegenerative diseases and potentially life-threatening in primary progressive aphasia (PPA), but remains poorly characterised in these syndromes. We hypothesised that dysphagia would be more prevalent in nonfluent/agrammatic variant (nfv)PPA than other PPA syndromes, predicted by accompanying motor features and associated with atrophy affecting regions implicated in swallowing control.
Methods: In a retrospective case-control study at our tertiary referral centre, we recruited 56 patients with PPA (21 nfvPPA, 22 semantic variant (sv)PPA, 13 logopenic variant (lv)PPA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!