Dexamethasone treatment influences tendon healing through altered resolution and a direct effect on tendon cells.

Sci Rep

Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Science, Linköping University, 581 83, Linköping, Sweden.

Published: July 2024

Inflammation, corticosteroids, and loading all affect tendon healing, with an interaction between them. However, underlying mechanisms behind the effect of corticosteroids and the interaction with loading remain unclear. The aim of this study was to investigate the role of dexamethasone during tendon healing, including specific effects on tendon cells. Rats (n = 36) were randomized to heavy loading or mild loading, the Achilles tendon was transected, and animals were treated with dexamethasone or saline. Gene and protein analyses of the healing tendon were performed for extracellular matrix-, inflammation-, and tendon cell markers. We further tested specific effects of dexamethasone on tendon cells in vitro. Dexamethasone increased mRNA levels of S100A4 and decreased levels of ACTA2/α-SMA, irrespective of load level. Heavy loading + dexamethasone reduced mRNA levels of FN1 and TenC (p < 0.05), while resolution-related genes were unaltered (p > 0.05). In contrast, mild loading + dexamethasone increased mRNA levels of resolution-related genes ANXA1, MRC1, PDPN, and PTGES (p < 0.03). Altered protein levels were confirmed in tendons with mild loading. Dexamethasone treatment in vitro prevented tendon construct formation, increased mRNA levels of S100A4 and decreased levels of SCX and collagens. Dexamethasone during tendon healing appears to act through immunomodulation by promoting resolution, but also through an effect on tendon cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222440PMC
http://dx.doi.org/10.1038/s41598-024-66038-5DOI Listing

Publication Analysis

Top Keywords

tendon healing
12
tendon cells
12
mrna levels
12
tendon
9
dexamethasone tendon
8
specific effects
8
increased mrna
8
dexamethasone
5
dexamethasone treatment
4
treatment influences
4

Similar Publications

Background: The paratenon has been shown to promote Achilles tendon healing, but the evidence supporting the role of paratenon protection technique in Achilles tendon repair is sparse. We retrospectively assessed the results of a paratenon-sparing repair technique vs an open giftbox repair of Achilles tendon ruptures.

Methods: Patients with Achilles tendon rupture who underwent surgical treatment at our hospital between January 2015 and August 2021 were retrospectively reviewed.

View Article and Find Full Text PDF

Mini-open transosseous repair with bursal augmentation improves outcomes in massive rotator cuff tears.

Sci Rep

January 2025

Department of Orthopedics and Traumatology, KasrAlAinyFacultyofMedicine, Cairo University, Al- Manial, Cairo, Egypt.

Treatment of Massive rotator cuff tears (MRCT) is difficult, with high rates of retears. Using biological augmentation in the form of the highly vascular subacromial bursa, was used to improve tendon healing. This work aimed to evaluate the results of arthroscopic guided mini-open transosseous repair with bursal augmentation in the treatment of MRCTs in a five-step approach.

View Article and Find Full Text PDF

Inadequate tendon healing and heterotopic bone formation result in substantial pain and disability, yet the specific cells responsible for tendon healing remain uncertain. Here we identify a CD26 tendon stem/progenitor cells residing in peritendon, which constitutes a primitive stem cell population with self-renewal and multipotent differentiation potentials. CD26 tendon stem/progenitor cells migrate into the tendon midsubstance and differentiation into tenocytes during tendon healing, while ablation of these cells led to insufficient tendon healing.

View Article and Find Full Text PDF

Case: Wide resection of a synovial sarcoma of the anteromedial distal leg involving the dimetaphyseal tibia and posterior tibial tendon produced an 8.5-cm osseous defect. To keep the free flap from invaginating into the defect and prevent kinking of the anastomosis, six 1.

View Article and Find Full Text PDF

Background: Rotator cuff repairs may fail because of compromised blood supply, suture anchor pullout, or poor fixation to bone. To augment the repairs and promote healing of the tears, orthobiologics, such a platelet-rich plasma (PRP), and biologic scaffolds have been applied with mixed results. Adipose allograft matrix (AAM), which recruits native cells to damaged tissues, may also be a potential treatment for rotator cuff tears.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!