Wastewater treatment plants (WWTPs) are suspected reservoirs of Legionella pneumophila (Lp). The required aeration and mixing steps lead to the emission and dispersion of bioaerosols potentially harboring Lp. The aim of the project is to evaluate municipal WWTPs as a possible source of legionellosis through the statistical analysis of case clusters. A space-time scanning statistical method was implemented in SaTScan software to identify and analyze WWTPs located within and close to spatiotemporal clusters of legionellosis detected in Quebec between 2016 and 2020. In parallel, WWTPs were ranked according to their pollutant load, flow rate and treatment type. These parameters were used to evaluate the WWTP susceptibility to generate and disperse bioaerosols. Results show that 37 of the 874 WWTPs are located inside a legionellosis cluster study zone, including six of the 40 WWTPs ranked most susceptible. In addition, two susceptible WWTPs located within an extended area of 2.5 km from the study zone (2.5-km buffer) were included, for a total of 39 WWTPs. The selected 39 WWTPs were further studied to document proximity of population, dominant wind direction, and surrounding water quality. Samples collected from the influent and the effluent of six selected WWTPs revealed the presence of Legionella spp. in 92.3% of the samples. Lp and Lp serogroupg 1 (Lp sg1) were detected below the limit of quantification in 69% and 46% of the samples, respectively. The presence of Legionella in wastewater and the novel statistical approach presented here provides information to the public health authorities regarding the investigation of WWTPs as a possible source of Legionella exposure, sporadic cases, and clusters of legionellosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-34019-wDOI Listing

Publication Analysis

Top Keywords

wwtps located
12
wwtps
11
wastewater treatment
8
treatment plants
8
wwtps source
8
clusters legionellosis
8
wwtps ranked
8
study zone
8
selected wwtps
8
presence legionella
8

Similar Publications

Reuse of reclaimed wastewater (RWW) in agriculture represents one of the key strategies to promote for reducing the pressures on water sources, as also fostered by the EU governance. Indeed, the European Regulation 741/2020 on water reuse, entered into force in 2023, was issued with the aim to extend the reuse of treated water in agriculture under safe conditions. It establishes the minimum quality requirements; it also foresees the possibility to add additional requirements, especially for contaminants of emerging concern (CECs), based on "scientific evidence" and the risk assessment.

View Article and Find Full Text PDF

The excessive use of antibiotics contributes significantly to environmental pollution and the widespread presence of antibiotic resistance genes (ARGs), which poses a serious threat to aquatic ecosystems and human health. Despite being a critical source of antibiotics and ARGs in the environment, research exploring their occurrence and removal characteristics in township wastewater treatment plants (WWTPs) remains limited. This study investigated the abundance and removal efficiencies of 39 antibiotics and 8 ARGs in influent and effluent samples from 40 township WWTPs located in the upper reaches of the Yangtze River.

View Article and Find Full Text PDF

Temporal, spatial, and methodological considerations in evaluating the viability of measles wastewater surveillance.

Sci Total Environ

January 2025

Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America. Electronic address:

Measles is a highly transmissible disease of increasing concern due to waning vaccination contributing to a significant rise in measles cases, with 283 reported cases and 16 outbreaks in the U.S. as of November 7, 2024.

View Article and Find Full Text PDF

Dirty habits: potential for spread of antibiotic-resistance by black-headed gulls from waste-water treatment plants.

Environ Sci Pollut Res Int

December 2024

Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Américo Vespucio 26, 41092, Seville, Spain.

Anthropogenic environments such as wastewater treatment plants (WWTPs) and landfills are sources of antimicrobial resistance (AMR). Black-headed gulls (Chroicocephalus ridibundus) frequently use WWTPs and may be vectors for AMR. We used GPS tracking data for 39 gulls for up to 8 months, combined with a shedding curve, to study sources and dispersal distances of AMR in Iberia.

View Article and Find Full Text PDF

Enhanced industrial wastewater monitoring: method development for non-target screening of highly polar substances using ZIC-HILIC-HRMS.

Anal Bioanal Chem

January 2025

Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany.

Non-target screening (NTS) plays a major role in the monitoring and management of water bodies. While the NTS of moderate to non-polar substances is well-established, the screening of highly polar chemicals remains challenging. In this study, a robust separation method for highly polar substances using zwitterionic hydrophilic interaction liquid chromatography coupled with high-resolution mass spectrometry (ZIC-HILIC-HRMS) was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!