A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbiome Dynamics and Functional Composition in Coelopa frigida (Diptera, Coelopidae): Insights into Trophic Specialization of Kelp Flies. | LitMetric

AI Article Synopsis

  • Coelopidae, or kelp flies, thrive in environments with beached kelp and rotting seaweeds, leading to specific adaptations for their algal diet.
  • The study assessed the microbiome composition of adult and larval Coelopa frigida using 16S rRNA metabarcoding, revealing that larvae have less microbial diversity and are dominated by just a few taxonomic units.
  • Notably, there was a significant difference in functional composition between larval and adult stages, indicating that the larvae's microbiome supports their feeding habits in a unique way.

Article Abstract

Coelopidae (Diptera), known as kelp flies, exhibit an ecological association with beached kelp and other rotting seaweeds. This unique trophic specialization necessitates significant adaptations to overcome the limitations of an algal diet. We aimed to investigate whether the flies' microbiome could be one of these adaptive mechanisms. Our analysis focused on assessing composition and diversity of adult and larval microbiota of the kelp fly Coelopa frigida. Feeding habits of the larvae of this species have been subject of numerous studies, with debates whether they directly consume kelp or primarily feed on associated bacteria. By using a 16S rRNA metabarcoding approach, we found that the larval microbiota displayed considerably less diversity than adults, heavily dominated by only four operational taxonomic units (OTUs). Phylogenetic placement recovered the most dominant OTU of the larval microbiome, which is the source of more than half of all metabarcoding sequence reads, as an undescribed genus of Orbaceae (Gammaproteobacteria). Interestingly, this OTU is barely found among the 15 most abundant taxa of the adult microbiome, where it is responsible for less than 2% of the metabarcoding sequence reads. The other three OTUs dominating the larval microbiome have been assigned as Psychrobacter (Gammaproteobacteria), Wohlfahrtiimonas (Gammaproteobacteria), and Cetobacterium (Fusobacteriota). Moreover, we also uncovered a distinct shift in the functional composition between the larval and adult stages, where our taxonomic profiling suggests a significant decrease in functional diversity in larval samples. Our study offers insights into the microbiome dynamics and functional composition of Coelopa frigida.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222186PMC
http://dx.doi.org/10.1007/s00248-024-02403-1DOI Listing

Publication Analysis

Top Keywords

functional composition
12
coelopa frigida
12
microbiome dynamics
8
dynamics functional
8
composition coelopa
8
trophic specialization
8
kelp flies
8
larval microbiota
8
larval microbiome
8
metabarcoding sequence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!