The gaze-following patch (GFP) is located in the posterior temporal cortex and has been described as a cortical module dedicated to processing other people's gaze-direction in a domain-specific manner. Thus, it appears to be the neural correlate of Baron-Cohen's eye direction detector (EDD) which is one of the core modules in his mindreading system-a neurocognitive model for the theory of mind concept. Inspired by Jerry Fodor's ideas on the modularity of the mind, Baron-Cohen proposed that, among other things, the individual modules are domain specific. In the case of the EDD, this means that it exclusively processes eye-like stimuli to extract gaze-direction and that other stimuli, which may carry directional information as well, are processed elsewhere. If the GFP is indeed EDD's neural correlate, it must meet this expectation. To test this, we compared the GFP's BOLD activity during gaze-direction following with the activity during arrow-direction following in the present human fMRI study. Contrary to the expectation based on the assumption of domain specificity, we did not find a differentiation between gaze- and arrow-direction following. In fact, we were not able to reproduce the GFP as presented in the previous studies. A possible explanation is that in the present study-unlike the previous work-the gaze stimuli did not contain an obvious change of direction that represented a visual motion. Hence, the critical stimulus component responsible for the identification of the GFP in the previous experiments might have been visual motion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265261PMC
http://dx.doi.org/10.1523/ENEURO.0065-24.2024DOI Listing

Publication Analysis

Top Keywords

gaze-following patch
8
posterior temporal
8
temporal cortex
8
neural correlate
8
visual motion
8
gaze arrows
4
arrows gaze-following
4
patch posterior
4
cortex differentiate
4
differentiate social
4

Similar Publications

The gaze-following patch (GFP) is located in the posterior temporal cortex and has been described as a cortical module dedicated to processing other people's gaze-direction in a domain-specific manner. Thus, it appears to be the neural correlate of Baron-Cohen's eye direction detector (EDD) which is one of the core modules in his mindreading system-a neurocognitive model for the theory of mind concept. Inspired by Jerry Fodor's ideas on the modularity of the mind, Baron-Cohen proposed that, among other things, the individual modules are domain specific.

View Article and Find Full Text PDF

Causal manipulation of gaze-following in the macaque temporal cortex.

Prog Neurobiol

July 2023

Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany. Electronic address:

Gaze-following, the ability to shift one's own attention to places or objects others are looking at, is essential for social interactions. Single unit recordings from the monkey cortex and neuroimaging work on the human and monkey brain suggest that a distinct region in the temporal cortex, the gaze-following patch (GFP), underpins this ability. Since previous studies of the GFP have relied on correlational techniques, it remains unclear whether gaze-following related activity in the GFP indicates a causal role rather than being just a reverberation of behaviorally relevant information produced elsewhere.

View Article and Find Full Text PDF

A frontoparietal network for volitional control of gaze following.

Eur J Neurosci

May 2023

Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

Gaze following is a major element of non-verbal communication and important for successful social interactions. Human gaze following is a fast and almost reflex-like behaviour, yet it can be volitionally controlled and suppressed to some extent if inappropriate or unnecessary, given the social context. In order to identify the neural basis of the cognitive control of gaze following, we carried out an event-related fMRI experiment, in which human subjects' eye movements were tracked while they were exposed to gaze cues in two distinct contexts: A baseline gaze following condition in which subjects were instructed to use gaze cues to shift their attention to a gazed-at spatial target and a control condition in which the subjects were required to ignore the gaze cue and instead to shift their attention to a distinct spatial target to be selected based on a colour mapping rule, requiring the suppression of gaze following.

View Article and Find Full Text PDF

The role of temporal cortex in the control of attention.

Curr Res Neurobiol

April 2022

Centre for Vision Research, York University, Toronto, Ontario, Canada.

Attention is an indispensable component of active vision. Contrary to the widely accepted notion that temporal cortex processing primarily focusses on passive object recognition, a series of very recent studies emphasize the role of temporal cortex structures, specifically the superior temporal sulcus (STS) and inferotemporal (IT) cortex, in guiding attention and implementing cognitive programs relevant for behavioral tasks. The goal of this theoretical paper is to advance the hypothesis that the temporal cortex attention network (TAN) entails necessary components to actively participate in attentional control in a flexible task-dependent manner.

View Article and Find Full Text PDF

Variability of neuronal responses in the posterior superior temporal sulcus predicts choice behavior during social interactions.

J Neurophysiol

December 2021

Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

Recent studies have shown that neural activity in a well-defined patch in the posterior superior temporal sulcus (the "gaze-following patch," GFP) of the primate brain is strongly modulated when the other's gaze attracts the observer's attention to locations/objects, the other is looking at. Changes of the mean discharge rate of neurons in the monkey GFP indicate that they are involved in two distinct computations: the allocation of spatial attention guided by the other's gaze vector and the suppression of gaze following if inappropriate in a given situation. Here, we asked if and how the discharge variability of neurons in the GFP is related to the task and if it carries information on behavioral performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!