Antibody design using deep learning: from sequence and structure design to affinity maturation.

Brief Bioinform

Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy.

Published: May 2024

Deep learning has achieved impressive results in various fields such as computer vision and natural language processing, making it a powerful tool in biology. Its applications now encompass cellular image classification, genomic studies and drug discovery. While drug development traditionally focused deep learning applications on small molecules, recent innovations have incorporated it in the discovery and development of biological molecules, particularly antibodies. Researchers have devised novel techniques to streamline antibody development, combining in vitro and in silico methods. In particular, computational power expedites lead candidate generation, scaling and potential antibody development against complex antigens. This survey highlights significant advancements in protein design and optimization, specifically focusing on antibodies. This includes various aspects such as design, folding, antibody-antigen interactions docking and affinity maturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221890PMC
http://dx.doi.org/10.1093/bib/bbae307DOI Listing

Publication Analysis

Top Keywords

deep learning
12
affinity maturation
8
antibody development
8
antibody design
4
design deep
4
learning sequence
4
sequence structure
4
structure design
4
design affinity
4
maturation deep
4

Similar Publications

The scattering of tiny particles in the atmosphere causes a haze effect on remote sensing images captured by satellites and similar devices, significantly disrupting subsequent image recognition and classification. A generative adversarial network named TRPC-GAN with texture recovery and physical constraints is proposed to mitigate this impact. This network not only effectively removes haze but also better preserves the texture information of the original remote sensing image, thereby enhancing the visual quality of the dehazed image.

View Article and Find Full Text PDF

This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.

View Article and Find Full Text PDF

Failure to predict stroke promptly may lead to delayed treatment, causing severe consequences like permanent neurological damage or death. Early detection using deep learning (DL) and machine learning (ML) models can enhance patient outcomes and mitigate the long-term effects of strokes. The aim of this study is to compare these models, exploring their efficacy in predicting stroke.

View Article and Find Full Text PDF

The study aims to address the critical issue of toxic side effects resulting from drug combinations, which can significantly increase health risks, clinical complications, and lead to drug being withdrawn from the market. A model named TSEDDI (toxic side effects of drug-drug interaction) has been developed to improve the identification of drug pairs that may induce toxicity or adverse reactions. By utilizing drug chemical structures and diverse proteins, we employ a convolutional neural network (CNN) to extract features from molecular images, enzyme proteins, transporter proteins, and target proteins.

View Article and Find Full Text PDF

Lithofacies classification and identification are of great significance in the exploration and evaluation of tight sandstone reservoirs. Existing methods of lithofacies identification in tight sandstone reservoirs face issues such as lengthy manual classification, strong subjectivity of identification, and insufficient sample datasets, which make it challenging to analyze the lithofacies characteristics of these reservoirs during oil and gas exploration. In this paper, the Fuyu oil formation in the Songliao Basin is selected as the target area, and an intelligent method for recognizing the lithophysics reservoirs in tight sandstone based on hybrid multilayer perceptron (MLP) and multivariate time series (MTS-Mixers) is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!