The biodegradable, nontoxic, and renewable carboxymethyl cellulose (CMC) hydrogel has been developed into a green adsorbent. However, the weak chemical interaction limits its adsorption capability and reusability. This work incorporated lignin with complex structure and ZnO nanoparticles with photocatalytic properties into CMC hydrogel beads to improve the removal of methylene blue (MB) through chemical interaction. Scanning electron microscopic images and Fourier-transform infrared spectra confirmed the compatibility between lignin and ZnO nanoparticles as well as the increment of active sites for dye removal. The MB adsorption on CMC hydrogel beads was more significantly affected by the temperate and initial concentration compared to contact time, pH, and adsorbent dosage. The MB adsorption capacity of CMC hydrogel was improved to 276.79 mg/g after incorporating lignin and ZnO nanoparticles. The adsorption followed the pseudo-second-order kinetic model and Langmuir isotherm model, indicating chemical adsorption. After 6 cycles, the adsorption capacity was reduced by about 15 %. The UV irradiation could recover and improve MB adsorption capacity of CMC hydrogel beads containing ZnO nanoparticles due to the introduction of reactive oxygen species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.133510 | DOI Listing |
Gels
December 2024
The Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 4070000, Israel.
Buccal drug delivery offers a promising alternative for avoiding gastrointestinal degradation and first-pass metabolism. However, enhancing the buccal epithelial barrier's permeability remains challenging. This study explores the effects of ethanolic extracts from (CM), (CMC), and (ORD) on buccal epithelium permeability in vitro using a TR146 cell-based model.
View Article and Find Full Text PDFGels
December 2024
Research Center for Green Energy Systems, Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Republic of Korea.
This study aims to develop efficient and sustainable hydrogels for dye adsorption, addressing the critical need for improved wastewater treatment methods. Carboxymethyl cellulose (CMC)-based hydrogels grafted with AAc were synthesized using gamma radiation polymerization. Various AAc to CMC ratios (5:5, 5:7.
View Article and Find Full Text PDFEur J Pharm Biopharm
December 2024
Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India. Electronic address:
Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modulate inflammation, and combat infections. Among several options, hydrogel can be a capable contender for biological dressings.
View Article and Find Full Text PDFBiomater Adv
December 2024
National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
On account of the existence of antibiotic resistance, the wound healing of pathogenic infection is still a challenge in modern society. A desirable wound dressing should own the abilities of adhesiveness, hemostasis and good mechanical property, meanwhile the property of eliminating bacteria without side effects is also highly needed. In this work, we established a kind of hydrogel based on carboxymethyl cellulose-graft-tyramine (CMC-Ty) and MXene (TiCT) through employing HO/HRP (horseradish peroxidase) as the initiator, then the as-prepared hydrogel (named CMC-Ty/MXene) was immersed in tannic acid (TA) solution, and this TA-treated hydrogel was called CMC-Ty/MXene+TA.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA.
Postsurgical adhesions are a common complication associated with surgical procedures; they not only impact the patient's well-being but also impose a financial burden due to medical expenses required for reoperative surgeries or adhesiolysis. Adhesions can range from a filmy, fibrinous, or fibrous vascular band to a cohesive attachment, and they can form in diverse anatomical locations such as the peritoneum, pericardium, endometrium, tendons, synovium, and epidural and pleural spaces. Numerous strategies have been explored to minimize the occurrence of postsurgical adhesions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!