Pharmaceuticals are emerging contaminants in the environment and are a ubiquitous presence in rivers downstream of wastewater treatment plant outfalls. Questions remain about the persistence of pharmaceuticals in rivers, and the uptake and bioconcentration of pharmaceuticals by aquatic plants. Our study took place in the Yarrowee/Leigh/Barwon River system in southeastern Australia. We quantified the concentrations of five pharmaceuticals (carbamazepine, primidone, propranolol, tramadol, and venlafaxine) in surface water at five sites along a 144-km stretch of river, downstream of the presumed primary point source (a wastewater treatment plant outfall). We quantified pharmaceuticals in the leaves of two aquatic plant species (Phragmites australis and Vallisneria australis) sampled at each site, and calculated bioconcentration factors. All five pharmaceuticals were detected in surface waters, and the highest detected concentration exceeded 500 ng.L (tramadol). Four of the pharmaceuticals (all except tramadol) were detected and quantified at all sites, including the furthest site from the outfall (144 km). Carbamazepine showed less attenuation with distance from the outfall than the other pharmaceuticals. Carbamazepine and venlafaxine were quantified in the leaves of both aquatic plant species (range: 10-31 ng.g), and there was evidence that bioconcentration factors increased with decreasing surface water concentrations. The study demonstrates the potential long-distance persistence of pharmaceuticals in river systems, and the bioconcentration of pharmaceuticals by aquatic plants in natural ecosystems. These phenomena deserve greater attention as aquatic plants are a potential point of transfer of pharmaceuticals from aquatic ecosystems to terrestrial food webs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174361DOI Listing

Publication Analysis

Top Keywords

pharmaceuticals aquatic
16
bioconcentration pharmaceuticals
12
aquatic plants
12
pharmaceuticals
11
river system
8
wastewater treatment
8
treatment plant
8
persistence pharmaceuticals
8
pharmaceuticals carbamazepine
8
surface water
8

Similar Publications

Therapeutic effects of fumaric acid on proteomic expression and gut microbiota composition in Pacific white shrimp (Penaeus vannamei) infected with Ecytonucleospora hepatopenaei (EHP).

Fish Shellfish Immunol

January 2025

Vet Products Research & Innovation Center Co., Ltd. 141 Moo9, Thailand Science Park, Innovation Clusters (INC2) Tower D 11(th) floor, Room No. INCD1108-INCD1111 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.

Recently, microsporidiosis caused by a microsporidian [Ecytonucleospora (Enterocytozoon) hepatopenaei, EHP] has been found to seriously impact the global shrimp industry. The aim of this study was to evaluate the therapeutic effects of fumaric acid (FA) in EHP-infected Pacific white shrimp (Penaeus vannamei). In the first 2 groups, non-EHP-infected shrimp were fed FA-supplemented (10 g/kg diet) or normal feed (CM+ and CM-, respectively).

View Article and Find Full Text PDF

Elevated concentrations of pharmaceutically active compounds (PhACs) in the water bodies are posing a serious threat to the aquatic microbiota and other organisms. In this context, anaerobic ammonium oxidizing (anammox) bacteria carry a great potential to degrade PhACs through their innate metabolic pathways. This study investigates the influence of short-term exposure to lower and higher concentrations (0.

View Article and Find Full Text PDF

Recent emphasis on the development of safe-and-sustainable-by-design chemicals highlights the need for methods facilitating the early assessment of persistence. Activated sludge experiments have been proposed as a time- and resource-efficient way to predict half-lives in simulation studies. Here, this persistence "read-across" approach was developed to be more broadly and robustly applicable.

View Article and Find Full Text PDF

Emerging organic contaminants (EOCs) are a growing concern for aquatic ecosystems, underscoring the need for advanced risk assessment methodologies. This study employed an integrated approach to evaluate the risks associated with 563 EOCs across 13 monitoring sites along the Sava River in Croatia. Sampling was conducted during the winter and spring months, spanning February to May.

View Article and Find Full Text PDF

Cu-doped waste-tire carbon as catalyst for UV/HO oxidation of ofloxacin.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:

Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!