Reproductive success of stream fish species in relation to high and low flow patterns: The role of life history strategies and species traits.

Sci Total Environ

University of Applied Sciences Trier, Environmental Campus Birkenfeld, Campusallee, 55768 Hoppstädten-Weiersbach, Germany; University of Duisburg-Essen, Faculty of Biology, Universitätsstraße 5, 45141 Essen, Germany.

Published: October 2024

Hydrological variability is a key factor in structuring biotic and abiotic processes in river ecosystems and is of particular importance to fish populations. We used 171 hydrological indices (HI) and young-of-the-year (YOY) fish abundances as indicators of reproductive success to compare species' response patterns to high and low flows on short-, intermediate-, and long-term scales. Our study included 13 common fish species in headwater streams of North Rhine-Westphalia, Germany. Generalized linear models using YOY abundances and HI on high- and low-flow patterns explained on average 64 % of the variability. HI calculated from long time series worked better than HI describing short- and intermediate-term high- and low flows. Species' reproductive success response to low flow HI depended on specific ecological traits whereas high flow HI differentially affected species according to their life history strategies. Equilibrium strategists responded negatively to high frequency and magnitude along with late timing of high flow, while periodic and opportunistic species mostly thrived under these conditions. We identified four species traits that mediated these differences between life history strategies. The reproductive success of species with low relative fecundity, large eggs and larvae, and long incubation periods was negatively impacted by the high frequency, high magnitude, and late timing of high flows. Conversely, the reproductive success of species with high relative fecundity, short incubation periods and small eggs and larvae was fostered by strong, frequent, and late high flows. The consideration of the relationship between reproductive success, life history, and fish species traits over several years under a range of flows is a novel step towards the implementation of measures to mitigate negative impacts and enhance conditions for successful fish reproduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174366DOI Listing

Publication Analysis

Top Keywords

reproductive success
24
life history
16
fish species
12
history strategies
12
species traits
12
high
10
species
9
high low
8
low flow
8
low flows
8

Similar Publications

A novel compound heterozygous mutation in the DYNC2H1 gene in a Chinese family with Jeune syndrome.

Hereditas

January 2025

Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.

Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).

View Article and Find Full Text PDF

Urban fruit bats give birth earlier in the season compared to rural fruit bats.

BMC Biol

January 2025

School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.

Background: Urbanization is rapidly altering our ecosystem. While most wild species refrain from entering urban habitats, some flourish in cities and adapt to the new opportunities these offer. Urban individuals of various species have been shown to differ in physiology, morphology, and behavior compared to their rural counterparts.

View Article and Find Full Text PDF

Infertility has emerged as a significant global health concern. Assisted reproductive technology (ART) assists numerous infertile couples in conceiving, yet some experience repeated, unsuccessful cycles. This study aims to identify the pivotal clinical factors influencing the success of fresh embryo transfer of in vitro fertilization (IVF).

View Article and Find Full Text PDF

Reproductive success and ultimately species survival at a population level is contingent on a plethora of neuroendocrine signals working in concert to regulate gonadal function and reproductive behavior. Among these, the neuropeptide kisspeptin (encoded by the KISS1/Kiss1 gene) has emerged as the master regulator of the hypothalamic-pituitary-gonadal axis. Besides the hypothalamus, both kisspeptin and its cognate receptor are extensively expressed throughout cortico-limbic brain structures in rodents and humans, which are regions traditionally implicated in behavioral and emotional responses.

View Article and Find Full Text PDF

Occurrence and allele frequencies of genetic variants associated with Varroa drone brood resistance (DBR) in African Apis mellifera subspecies.

J Invertebr Pathol

January 2025

Laboratory of Molecular Entomology and Bee Pathology (L-MEB), Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.

The ectoparasite Varroa destructor is a major contributor to the global decline of honeybee colonies (Apis mellifera), especially in the Northern Hemisphere. However, Varroa-resistant honeybee populations have been reported in various regions around the globe, including Europe and Africa. This resistance is primarily attributed to the trait known as Suppressed Mite Reproduction (SMR), which significantly reduces the reproductive success of Varroa mites within these colonies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!