A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sulfate-reducing consortium HQ23 stabilizes metal(loid)s and activates biological N-fixation in mixed heavy metal-contaminated soil. | LitMetric

Sulfate-reducing consortium HQ23 stabilizes metal(loid)s and activates biological N-fixation in mixed heavy metal-contaminated soil.

Sci Total Environ

School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada.

Published: October 2024

AI Article Synopsis

  • Sulfate-reducing bacteria (SRB) can help clean up mine pollution but need more research on how they stabilize heavy metals in low oxygen environments.
  • The study created a new bacterial consortium, HQ23, using SRB and local microbes, confirming the presence of important species through advanced genetic techniques.
  • Results showed HQ23 thrives in low oxygen and varying pH levels, effectively reducing harmful metals in contaminated soils, while also enhancing nitrogen-fixing activity, suggesting it could be valuable for future environmental clean-ups.

Article Abstract

Sulfate-reducing bacteria (SRB) are used in the remediation of mine pollution; however, the mechanism of stabilizing multiple heavy metal(loid)s by the SRB consortium under low oxygen conditions needs further study. Indigenous microflora were extracted from non-ferrous metal-contaminated soil co-inoculated with enriched SRB consortium and assembled as the HQ23 consortium. The presence of Desulfovibrio (SRB) in HQ23 was confirmed by 16S rRNA sequencing and qPCR. The effects of culture media, dissolved oxygen (DO), SO, and pH on the HQ23 growth rate, and the SO-reducing activity were examined. Data indicates that the HQ23 sustained SRB function under low DO conditions (3.67 ± 0.1 mg/L), but the SRB activity was inhibited at high DO content (5.75 ± 0.39 mg/L). The HQ23 can grow from pH 5 to pH 9 and can decrease mobile or bioavailable Cr, Cu, and Zn concentrations in contaminated soil samples. FTIR revealed that Cu and Cr adsorbed to similar binding sites on bacteria, likely decreasing bacterial Cu toxicity. Increased abundances of DSV (marker for Desulfovibrio) and nifH (N-fixation) genes were observed, as well as an accumulation of nitrate-N content in soils suggesting that HQ23 stimulates the biological N-fixation in soils. This study strongly supports the future application of SRB for the bioremediation of heavy metal-polluted sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174402DOI Listing

Publication Analysis

Top Keywords

biological n-fixation
8
metal-contaminated soil
8
srb consortium
8
hq23
7
srb
7
sulfate-reducing consortium
4
consortium hq23
4
hq23 stabilizes
4
stabilizes metalloids
4
metalloids activates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!