A significant knowledge gap exists regarding the impact of soil organic matter on the bioavailability of AgS-NPs (environmentally relevant forms of Ag-NPs) in soil-earthworm-plant systems. This study used two soils with varying organic matter content, both with and without earthworms, to investigate the bioavailability of AgS-NPs. The findings revealed an 80 % increase in Ag bioaccessibility to soybeans in soils with high organic matter content compared to soils with low organic matter. Additionally, the presence of earthworms significantly increased Cl concentrations from 24.3-62.2 mg L to 80.1-147.2 mg L, triggering the elevated bioavailability of Ag. Interestingly, AgS-NPs eliminated the stimulative effects of earthworms on plant nutrient uptake. In the presence of earthworms, the high organic matter soil amended with AgS-NPs exhibited lower concentrations of essential elements (Ca, Cu, Fe, K, and P) in plant tissues compared to soils without earthworms. Our study presents evidence of the transformation of AgS-NPs into Ag-NPs across various soil solutions, resulting in the formation of Ag nanoparticle complexes. Particularly noteworthy is the significant reduction in particle sizes in soils incubated with earthworms and high organic matter content, from 85.0 nm to 40.2 nm. Notably, in the rhizosphere soil, a decrease in the relative abundance of nutrient cycling-related phyla was observed, with reductions of 18.5 % for Proteobacteria and 30.0 % for Actinobacteriota. These findings offer valuable insights into the biological and biochemical consequences of AgS-NP exposure on earthworm-mediated plant nutrient acquisition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.174433 | DOI Listing |
Bull Environ Contam Toxicol
January 2025
College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
The pollutants after were discharged into the water can gradually degrade through the self-purification. The oxygen consumption and pollutant degradation rates characterize the self-purification of small and medium-sized streams, while the dynamics of the two characteristics for large rivers has not been reported yet. The in-situ investigation for 297 sites in the 1700 km stream of the Yangtze River was conducted.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China.
This study focuses on the composition and sources of dissolved organic matter (DOM) in the Fancun Reservoir, located in Ningguo City, Anhui Province, China. The investigation was conducted by analyzing the spectral characteristics of DOM using UV-Vis absorption spectra and fluorescence spectroscopy. The humic substances were dominated by fulvic acid, with an average DOM concentration of 30.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Key Laboratory of Surficial Geochemistry, Ministry of Education School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.
Heavy metals were analyzed in rhizosphere soils and rice grains collected from typical black shale areas. The concentrations of As, Cd, Cu, and Zn in the rhizosphere soil exceeded the current soil environmental quality standards. Cd exhibited the highest bioaccumulation capacity, with 45% of rice grains exceeding food safety limit.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China.
Two-dimensional (2D) organic-inorganic halide perovskites are promising sensitive materials for optoelectronic applications due to their strong light-matter interactions, layered structure, long carrier lifetime and diffusion length. However, a high gate bias is indispensable for perovskite-based phototransistors to optimize detection performances, since ion migration seriously screens the gate electric field and the deposition process introduces intrinsic defects, which induces severe leakages and large power dissipation. In this work, an ultrasensitive phototransistor based on the (PEA)SnI perovskite and the Al:HfO ferroelectric layer is meticulously studied, working without an external gate voltage.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
The formation of novel complexes from so far non-investigated ligands and different metal centers is important for the development of new functional materials such as (photo)catalysts or biologically active compounds. Still, promising strategies to quickly and systematically investigate the complexation behavior of selected ligands are rare. We developed an NMR-based screening approach to monitor changes within reaction mixtures containing metals and ligands on a small scale a simple but reliable protocol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!