The human monocytic THP-1 cell line is the most routinely employed in vitro model for studying monocyte-to-macrophage differentiation. Despite the wide use of this model, differentiation protocols using phorbol 12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D (1,25D) vary drastically between studies. Given that differences in differentiation protocols have the potential to impact the characteristics of the macrophages produced, we aimed to assess the efficacy of three different THP-1 differentiation protocols by assessing changes in morphology and gene- and cell surface macrophage marker expression. THP-1 cells were differentiated with either 5 nM PMA, 10 nM 1,25D, or a combination thereof, followed by a rest period. The results indicated that all three protocols significantly increased the expression of the macrophage markers, CD11b (p < 0.001) and CD14 (p < 0.010). Despite this, THP-1 cells exposed to 1,25D alone did not adopt the morphological and expression characteristics associated with macrophages. PMA was required to produce these characteristics, which were found to be more pronounced in the presence of 1,25D. Both PMA- and PMA with 1,25Ddifferentiated THP-1 cells were capable of M1 and M2 macrophage polarization, though the gene expression of polarization-associated markers was most pronounced in PMA with 1,25Ddifferentiated THP-1 cells. Moreover, the combination of PMA with 1,25D appeared to support the process of commitment to a particular polarization state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jim.2024.113716 | DOI Listing |
Microorganisms
November 2024
Microbial Methods Development Branch, Division of Food and Environmental Safety, Office of Applied Microbiology and Technology (OAMT), Office of Laboratory Operations and Applied Science (OLOAS), Human Foods Program, Food & Drug Administration, College Park, MD 20740, USA.
Precision metagenomic approaches using Oxford Nanopore Technology (ONT) sequencing has been shown to allow recovery of complete genomes of foodborne bacteria from overnight enrichments of agricultural waters. This study tests the applicability of a similar approach for genome recovery from powdered infant formula (PIF) overnight enrichments, where typically dominates the overall microbiome (>90%). This study aimed to test whether using ONT sequencing of overnight PIF enrichments could recover a completely closed genome for further genomic characterization.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan.
Iodine-123 metaiodobenzylguanidine (I-123 MIBG) is a crucial radiopharmaceutical widely used in nuclear medicine for its diagnostic capabilities in both cardiology and oncology. This review aims to present a comprehensive evaluation of the clinical applications of I-123 MIBG, focusing on its use in diagnosing and managing various diseases. In cardiology, I-123 MIBG has proven invaluable in assessing cardiac sympathetic innervation, particularly in patients with heart failure, where it provides prognostic information that guides treatment strategies.
View Article and Find Full Text PDFPathogens
December 2024
Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
More than one-hundred species that affect animals and humans have been described, eight of which have been associated with emerging and underdiagnosed zoonoses. Most diagnostic studies in humans have used serology or molecular assays based on the 18S rRNA gene. Because the 18S rRNA gene is highly conserved, obtaining an accurate diagnosis at the species level is difficult, particularly when the amplified DNA fragment is small.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
European Commission, Joint Research Centre (JRC), 76125 Karlsruhe, Germany.
This work presents the synthesis, purification, and characterization of a molten salt fuel for the irradiation experiment SALIENT-03 (SALt Irradiation ExperimeNT), a collaborative effort between the Nuclear Research and Consultancy Group and the Joint Research Centre, European Commission. The primary objective of the project is to investigate the corrosion behavior of selected Ni-alloy based structural materials which are being considered for the construction of fluoride molten salt reactors. During the test, these materials will be exposed to selected liquid molten fuel salts under irradiation in the High Flux Reactor in Petten, the Netherlands.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy.
The development of new bioactive glasses (BGs) with enhanced bioactivity and improved resistance to crystallization is crucial for overcoming the main challenges faced by commercial BGs. Most shaping processes require thermal treatments, which can induce partial crystallization, negatively impacting the biological and mechanical properties of the final product. In this study, we present a novel bioactive glass composition, S53P4_MSK, produced by a melt-quench route.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!