Mitigation of gestational diabetes-induced endothelial dysfunction through FGF21-NRF2 pathway activation involving L-Cystine.

Biochim Biophys Acta Mol Basis Dis

Department of Obstetrics and Gynecology, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, Wenzhou, China. Electronic address:

Published: October 2024

Gestational diabetes mellitus (GDM) disrupts glucolipid metabolism, endangering maternal and fetal health. Despite limited research on its pathogenesis and treatments, we conducted a study using serum samples from GDM-diagnosed pregnant women. We performed metabolic sequencing to identify key small molecule metabolites and explored their molecular interactions with FGF21. We also investigated FGF21's impact on GDM using blood samples from affected women. Our analysis revealed a novel finding: elevated levels of L-Cystine in GDM patients. Furthermore, we observed a positive correlation between L-Cystine and FGF21 levels, and found that L-Cystine induces NRF2 expression via FGF21 for a period of 96 h. Under high glucose (HG) conditions, FGF21 upregulates NRF2 and downstream genes NQO1 and EPHX1 via AKT phosphorylation induced by activation of IRS1, enhancing endothelial function. Additionally, we confirmed that levels of FGF21, L-Cystine, and endothelial function at the third trimester were effectively enhanced through appropriate exercise and diet during pregnancy in GDM patients (GDM + ED). These findings suggest FGF21 as a potential therapeutic agent for GDM, particularly in protecting endothelial cells. Moreover, elevated L-Cystine via appropriate exercise and diet might be a potential strategy to enhance FGF21's efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2024.167329DOI Listing

Publication Analysis

Top Keywords

levels l-cystine
8
gdm patients
8
endothelial function
8
appropriate exercise
8
exercise diet
8
l-cystine
6
fgf21
6
gdm
5
mitigation gestational
4
gestational diabetes-induced
4

Similar Publications

Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.

View Article and Find Full Text PDF

Berberine ameliorates seizure activity and cardiac dysfunction in pentylenetetrazol-kindling seizures in rats: Modulation of sigma1 receptor, Akt/eNOS signaling, and ferroptosis.

Neuropharmacology

January 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt.

Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy.

View Article and Find Full Text PDF

Background: Radiologically Isolated Syndrome (RIS) characterized by abnormalities on MRI that do not manifest as clinical symptoms of Multiple Sclerosis (MS) but raise suspicion for MS. Considering that RIS often evolves into MS, various diagnostic criteria have been established, and each suggested biomarker warrants thorough consideration and discussion. In this study, metabolomic profiling of body fluids of patients who were being followed up with a pre-diagnosis of RIS or MS and had not yet received any treatment was conducted.

View Article and Find Full Text PDF

The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD.

View Article and Find Full Text PDF

The activation of acid-sensing ion channel 1a (ASIC1a) in response to extracellular acidification leads to an increase in extracellular calcium influx, thereby exacerbating the degeneration of articular chondrocytes in rheumatoid arthritis (RA). It has been suggested that the inhibition of extracellular calcium influx could potentially impede chondrocyte ferroptosis. The cystine transporter, solute carrier family 7 member 11 (SLC7A11), is recognized as a key regulator of ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!