A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Observation of the scaling dimension of fractional quantum Hall anyons. | LitMetric

Unconventional quasiparticles emerging in the fractional quantum Hall regime present the challenge of observing their exotic properties unambiguously. Although the fractional charge of quasiparticles has been demonstrated for nearly three decades, the first convincing evidence of their anyonic quantum statistics has only recently been obtained and, so far, the so-called scaling dimension that determines the propagation dynamics of the quasiparticles remains elusive. In particular, although the nonlinearity of the tunnelling quasiparticle current should reveal their scaling dimension, the measurements fail to match theory, arguably because this observable is not robust to non-universal complications. Here we expose the scaling dimension from the thermal noise to shot noise crossover and observe an agreement with expectations. Measurements are fitted to the predicted finite-temperature expression involving both the scaling dimension of the quasiparticles and their charge, in contrast to previous charge investigations focusing on the high-bias shot-noise regime. A systematic analysis, repeated on several constrictions and experimental conditions, consistently matches the theoretical scaling dimensions for the fractional quasiparticles emerging at filling factors ν = 1/3, 2/5 and 2/3. This establishes a central property of fractional quantum Hall anyons and demonstrates a powerful and complementary window into exotic quasiparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324513PMC
http://dx.doi.org/10.1038/s41586-024-07727-zDOI Listing

Publication Analysis

Top Keywords

scaling dimension
20
fractional quantum
12
quantum hall
12
hall anyons
8
quasiparticles emerging
8
quasiparticles
6
dimension
5
fractional
5
scaling
5
observation scaling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!