An uncrewed aerial vehicle (UAV) platform equipped with dual imaging cameras, a gas sampling system, and a remote synchronous monitoring system was developed to sample and analyze volatile organic compounds (VOCs) emitted from landfills. The remote synchronous monitoring system provided real-time video to administrators with specific permissions to assist in identifying sampling sites within extensive landfill areas. The sampling system included four kits capable of collecting samples from different locations during a single flight mission. Each kit comprised a 1 L Tedlar bag for measuring landfill VOC concentrations according to the TO-15 method prescribed by the US Environmental Protection Agency. The air sample was introduced into a Tedlar bag via pumping. A known volume of the sample was subsequently concentrated using a solid multisorbent concentrator. Following this, the sample underwent cold trap concentration and thermal desorption. The concentrated sample was then transferred to a chromatography-mass spectrometry system for separation and analysis. Since the anaerobic catabolism of organic waste is exothermic and emits VOCs, this study employed UAV thermal imaging to locate principal emission sources for sampling. Visible-light imaging helped identify newer or older landfill sections, aiding in the selection of appropriate sampling sites, particularly when surfaces were thermally disturbed by solar radiation. Field measurements were conducted under three meteorological conditions: sunny morning, cirrus morning, and thin cloud evening (2 h after sunset), identifying 119, 122, and 111 chemical species respectively. The sequence of total VOC concentrations measured correlated with the meteorological conditions as follows: cirrus morning > thin cloud evening > sunny morning. The results indicated that ambient temperature and global solar radiation significantly influenced daytime gas emissions from landfills. Evening thermal images, unaffected by solar heating, facilitated more accurate identification of major VOC emission points, resulting in higher VOC concentrations compared to those recorded in the sunny morning. VOCs from the landfill were categorized into nine organic groups: alkanes, alkenes, carbonyls, aromatics, alcohols, esters, ethers, organic oxides, and others. The classification was based on carbon-containing compounds (C, where the compound contains n carbon atoms). Alkanes were predominant in terms of C presence, followed by alcohols and carbonyls. Among the organic groups, organic oxides, particularly 2-heptyl-1,3-dioxolane, exhibited the highest concentrations, succeeded by alkenes. Sampling under cloudy conditions or in the evening is recommended to minimize the effects of surface temperature anomalies caused by solar radiation, which vary due to differences in land composition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.121575DOI Listing

Publication Analysis

Top Keywords

voc concentrations
12
solar radiation
12
volatile organic
8
organic compounds
8
uncrewed aerial
8
aerial vehicle
8
sampling system
8
remote synchronous
8
synchronous monitoring
8
monitoring system
8

Similar Publications

Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient.

View Article and Find Full Text PDF

Scrutinizing the untapped potential of emerging ABSe (A = Ca, Ba; B = Zr, Hf) chalcogenide perovskites solar cells.

Sci Rep

January 2025

Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, Santiago de Querétaro, C.P.76010, Querétaro, México.

ABSchalcogenide perovskites (CPs) are emerging as promising alternatives to lead halide perovskites due to their unique properties. However, their bandgap exceeds the Shockley-Queisser limit. By substituting S with Se, the bandgap is significantly reduced, shifting it from the visible into the near-infrared region.

View Article and Find Full Text PDF

This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified.

View Article and Find Full Text PDF

Varroa Volatiles Offer Chemical Cues to Honey Bees for Initial Parasitic Recognition.

Biomolecules

January 2025

Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.

Olfaction mediated by the antennae is a vital sensory modality for arthropods and could be applied as a tool in pest control. The ectoparasitic mite poses a significant threat to the health of the honey bee worldwide and has garnered global attention. To better understand the chemical ecology of this host-parasite relationship, we collected and characterized the volatile organic compounds (VOCs) from and used electroantennography (EAG) to record the responses of honey bee ( and ) antennae to the different VOCs.

View Article and Find Full Text PDF

Significant Impact of a Daytime Halogen Oxidant on Coastal Air Quality.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.

Chlorine radicals (Cl) are highly reactive and affect the fate of air pollutants. Several field studies in China have revealed elevated levels of daytime molecular chlorine (Cl), which, upon photolysis, release substantial amounts of Cl but are poorly represented in current chemical transport models. Here, we implemented a parametrization for the formation of daytime Cl through the photodissociation of particulate nitrate in acidic environments into a regional model and assessed its impact on coastal air quality during autumn in South China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!