Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The endeavor to architect bifunctional electrocatalysts that exhibit both exceptional activity and durability heralds an era of boundless potential for the comprehensive electrolysis of seawater, an aspiration that, nevertheless, poses a substantial challenge. Within this work, we describe the precise engineering of a three-dimensional interconnected nanoparticle system named SCdoped CoVO/CoP (SCCoVO), achieved through a meticulously arranged hydrothermal treatment sequence followed by gas-phase carbonization and phosphorization. The resulting SCCoVO electrode exhibits outstanding bifunctional electrocatalytic stability, attributed to the strategic anionic doping and abundant heterogeneous interfaces. Doping not only adjusts the electronic structure, enhancing electron transfer efficiency but also optimizes the surface-active sites. This electrode prodigiously necessitated an extraordinarily minimal overpotential of merely 92 and 350 mV to attain current densities of 10 and 50 mA cm for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, in 1 M KOH solution. Noteworthily, when integrated into an electrolyzer for the exhaustive splitting of seawater, the SCP-CoVO manifested an exceptionally low cell voltage of 2.08 V@50 mA cm and showcased a durability that eclipses that of most hitherto documented nickel-based bifunctional materials. Further elucidation through Density Functional Theory (DFT) analyses underscored that anion doping and the inherent heterostructure adeptly optimize the Gibbs free energy of intermediates comprising hydrogen, chlorine, and oxygen (manifested as OH, O, OOH) within the HER and OER paradigms, thus propelling the electrochemical kinetics of seawater splitting to unprecedented velocities. These revelations unfurl a pioneering design philosophy for the creation of cost-effective yet superior catalysts aimed at the holistic division of water molecules, charting a course towards the realization of efficient and sustainable hydrogen production methodologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.06.240 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!