A completely green protocol was developed for the synthesis of a series of arylaminonaphthol derivatives in the presence of N-ethylethanolamine (NEEA) as a catalyst under ultrasonic irradiation and solventless conditions. The major assets of this methodology were the use of non-toxic organic medium, available catalyst, mild reaction condition, and good to excellent yield of desired products. All of the synthesized products were screened for their in vitro antioxidant activity using DPPH, ABTS, and Ferric-phenanthroline assays and it was found that most of them are potent antioxidant agents. Also, their butyrylcholinesterase inhibitory activity has been investigated in vitro. All tested compounds exhibited potential inhibitory activity toward BuChE when compared to standard reference drug galantamine, however, compounds 4r, 4u, 4 g and 4x gave higher butyrylcholinesterase inhibitory with IC values of 14.78 ± 0.65 µM, 16.18 ± 0.50 µM, 20.00 ± 0.50 µM, and 20.28 ± 0.08 µM respectively. On the other hand, we employed density functional theory (DFT), calculations to analyze molecular geometry and global reactivity descriptors, and MESP analysis to predict electrophilic and nucleophilic attacks. A quantitative structure-activity relationship (QSAR) investigation was conducted on the antioxidant and butyrylcholinesterase properties of 25 arylaminonaphthol derivatives, resulting in robust and satisfactory models. To evaluate their anti-Alzheimer's activity, compounds 4 g, 4q, 4r, 4u, and 4x underwent docking simulations at the active site of the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), revealing why these compounds displayed superior activity, consistent with the biological findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2024.107598 | DOI Listing |
Bioorg Chem
September 2024
Laboratory of Synthesis of Molecules with Biological Interest, Faculty of Exact Sciences, Mentouri - Constantine 1 University, 25000 Constantine, Algeria.
A completely green protocol was developed for the synthesis of a series of arylaminonaphthol derivatives in the presence of N-ethylethanolamine (NEEA) as a catalyst under ultrasonic irradiation and solventless conditions. The major assets of this methodology were the use of non-toxic organic medium, available catalyst, mild reaction condition, and good to excellent yield of desired products. All of the synthesized products were screened for their in vitro antioxidant activity using DPPH, ABTS, and Ferric-phenanthroline assays and it was found that most of them are potent antioxidant agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!