The human lung is a complex organ that comprises diverse populations of epithelial, mesenchymal, vascular, and immune cells, which gains even greater complexity during disease states. To effectively study the lung at a single-cell level, a dissociation protocol that achieves the highest yield of viable cells of interest with minimal dissociation-associated protein or transcription changes is key. Here, we detail a rapid collagenase-based dissociation protocol (Col-Short) that provides a high-yield single-cell suspension that is suitable for a variety of downstream applications. Diseased human lung explants were obtained and dissociated through the Col-Short protocol and compared with four other dissociation protocols. Resulting single-cell suspensions were then assessed with flow cytometry, differential staining, and quantitative real-time PCR to identify major hematopoietic and nonhematopoietic cell populations, as well as their activation states. We observed that the Col-Short protocol provides the greatest number of cells per gram of lung tissue, with no reduction in viability when compared with previously described dissociation protocols. Col-Short had no observable surface protein marker cleavage as well as lower expression of protein activation markers and stress-related transcripts compared with four other protocols. The Col-Short dissociation protocol can be used as a rapid strategy to generate single cells for respiratory cell biology research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1165/rcmb.2023-0343MA | DOI Listing |
JMIR Form Res
January 2025
Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Background: The potential of telehealth psychotherapy (ie, the online delivery of treatment via a video web-based platform) is gaining increased attention. However, there is skepticism about its acceptance, safety, and efficacy for patients with high emotional and behavioral dysregulation.
Objective: This study aims to provide initial effect size estimates of symptom change from pre- to post treatment, and the acceptance and safety of telehealth dialectical behavior therapy (DBT) for individuals diagnosed with borderline personality disorder (BPD).
Am J Physiol Lung Cell Mol Physiol
January 2025
Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
Rigor and reproducibility are vital to scientific advancement. It is unclear whether a protocol optimized for tissue dissociation in one institution performs well universally. Here, we share our brand-new lab's experience with inter-institutional variability that led to the discovery that a protocol optimized for murine lung dissociation at Boston University (BU) fails to reproduce similar CD4 T cell, CD8 T cell, and B cell outcomes at the University of Michigan at Ann Arbor (U-M).
View Article and Find Full Text PDFCurr Protoc
January 2025
Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana.
Human induced pluripotent stem cell (hiPSC)-based disease modeling can be successfully recapitulated to mimic disease characteristics across various human pathologies. Glaucoma, a progressive optic neuropathy, primarily affects the retinal ganglion cells (RGCs). While multiple groups have successfully generated RGCs from non-diseased hiPSCs, producing RGCs from glaucomatous human samples holds significant promise for understanding disease pathology by revealing patient-specific disease signatures.
View Article and Find Full Text PDFBMC Biol
January 2025
Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany.
Background: C-reactive protein (CRP) represents a routine diagnostic marker of inflammation. Dissociation of native pentameric CRP (pCRP) into the monomeric structure (mCRP) liberates proinflammatory features, presumably contributing to excessive immune cell activation via unknown molecular mechanisms.
Results: In a multi-translational study of systemic inflammation, we found a time- and inflammation-dependent pCRP dissociation into mCRP.
J Vis Exp
December 2024
Division of Exercise Physiology, Department of Health Professions, West Virginia University School of Medicine; Cancer Institute, West Virginia University School of Medicine; 3Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!