Thoughtfully managed hydroperiods in natural and artificial wetlands could potentially provide a combination of desirable flood control services and high ecological functions. To explore how managed freshwater wetlands typical of the Houston, Texas area would respond to different hydrological regimes that might occur if wetlands were drained in anticipation of a heavy rain that did not materialize, we conducted a mesocosm experiment with six flooding depths and seven drought durations, followed by seven months of recovery. We found that the speed in which mesocosms dried out was a function of initial water depth, with mesocosms initially set with greater water depths (30 cm) taking ~ 38 days to dry out versus zero days for wetlands that were completely drained. Individual plant species (14 species planted; 8 species common at the end of the recovery period) were affected by drought length, flooding depth, or their interaction, although details of these responses varied among the species. The composition of the plant community at the end of the drought period was strongly affected by drought length, and the effect of the drought length treatment persisted through seven months of post-drought recovery, with the 80- and 160-day drought treatments diverging most strongly from shorter drought treatments. Above- and below-ground biomass of plants was not affected by the treatments, but above-ground dead biomass (litter) decreased with increasing drought length. Densities of mosquito larvae, snails and tadpoles were temporally variable, and were affected more during the treatment period and early in recovery than after a disturbance event late in recovery. Our results indicate that managed wetlands in southeast Texas would be quite resilient to dry periods of up to 40 days in duration, especially if water was not completely drained at the beginning of the drought. In addition, many species would persist in managed wetlands even with droughts of up to 160 days. This indicates considerable potential for managing the hydroperiods of artificial detention ponds by retaining water longer to increase ecological function, with little to no loss of flood control services, and for managing the hydroperiods of natural wetlands by draining them in advance of anticipated rains to increase flood control services, with little to no loss of ecological function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221699PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306578PLOS

Publication Analysis

Top Keywords

flood control
16
drought length
16
control services
12
drought
9
freshwater wetlands
8
hydroperiods natural
8
completely drained
8
period drought
8
drought treatments
8
managed wetlands
8

Similar Publications

Riverine flooding is increasing in frequency and intensity, requiring river management agencies to consider new approaches to working with communities on flood mitigation planning. Communication and information sharing between agencies and communities is complex, and mistrust and misinformation arise quickly when communities perceive that they are excluded from planning. Subsequently, riverfront community members create narratives that can be examined as truth regimes-truths created and repeated that indicate how flooding and its causes are understood, represented, and discussed within their communities-to explain why flooding occurs in their area.

View Article and Find Full Text PDF

Harsh operating conditions imposed by vehicular applications significantly limit the utilization of proton exchange membrane fuel cells (PEMFCs) in electric propulsion systems. Improper/poor management and supervision of rapidly varying current demands can lead to undesired electrochemical reactions and critical cell failures. Among other failures, flooding and catalytic degradation are failure mechanisms that directly impact the composition of the membrane electrode assembly and can cause irreversible cell performance deterioration.

View Article and Find Full Text PDF

With advancements in molecular diagnostics, including Highly Multiplexed Microbiological/Medical Countermeasure Diagnostic Devices (HMMDs) and the impending integration of Next-Generation Sequencing (NGS) into clinical microbiology, interpreting the flood of nucleic acid data in a clinically meaningful way has become a crucial challenge. This study focuses on the Luminex xTAG Gastrointestinal Pathogen Panel (GPP) for detection, evaluating the impact of MFI threshold adjustments on diagnostic accuracy and exploring the need for an "indeterminate" result category to enhance clinical utility in molecular diagnostics. A retrospective review of -positive cases detected via the Luminex xTAG GPP was conducted from June 2016 to November 2023.

View Article and Find Full Text PDF

It has been proposed that maximizing expectancy violation enhances the efficacy of exposure therapy. The clinical utility of expectancy violation remains unclear and it has not yet been studied in PTSD. We aimed to test whether explicitly focusing on expectancy violation leads to superior exposure outcomes.

View Article and Find Full Text PDF

Phenol-Quinone Redox Couples of Natural Organic Matter Promote Mercury Methylation in Paddy Soil.

Environ Sci Technol

January 2025

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

Methylmercury in paddy soils poses threats to food security and thus human health. Redox-active phenolic and quinone moieties of natural organic matter (NOM) mediate electron transfer between microbes and mercury during mercury reduction. However, their role in mercury methylation remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!