Equations for estimating binary mixture toxicity: 3-methyl-2-butanone with a series of electrophiles.

PLoS One

College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America.

Published: July 2024

Mixture toxicity was determined for 32 binary combinations. One chemical was the non-reactive, non-polar narcotic 3-methyl-2-butanone (always chemical A) and the other was a potentially reactive electrophile (chemical B). Bioluminescence inhibition in Allovibrio fischeri was measured at 15-, 30-, and 45-minutes of exposure for A, B, and the mixture (MX). Concentration-response curves (CRCs) were developed for each chemical and used to develop predicted CRCs for the concentration addition (CA) and independent action (IA) mixture toxicity models. Also, MX CRCs were generated and compared with model predictions using the 45-minute data. Classification of observed mixture toxicity used three specific criteria: 1) predicted IA EC50 vs. CA EC50 values at 45-minutes, 2) consistency of 45-minute MX CRC fit to IA, CA, or otherwise at three effect levels (EC25, EC50 and EC75), and 3) the known/suspected mechanism of toxicity for chemical B. Mixture toxicity was then classified into one of seven groupings. As a result of the predicted IA EC50 being more toxic than the predicted CA EC50, IA represented the greater toxic hazard. For this reason, non-sham MXs having toxicity consistent with CA were classified as being "coincident" with CA rather than mechanistically-consistent with CA. Multiple linear regression analyses were performed to develop equations that can be used to estimate the toxicity of other 3M2B-containing binary mixtures. These equations were developed from the data for both IA and CA, at each exposure duration and effect level. Each equation had a coefficient of determination (r2) above 0.950 and a variance inflation factor <1.2. This approach can potentially reduce the need for mixture testing and is amenable to other model systems and to assays that evaluate toxicity at low effect levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221661PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306382PLOS

Publication Analysis

Top Keywords

mixture toxicity
20
predicted ec50
12
toxicity
8
mixture
6
chemical
5
ec50
5
equations estimating
4
estimating binary
4
binary mixture
4
toxicity 3-methyl-2-butanone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!