AI Article Synopsis

  • * Microneedle array electrodes (MAEs) offer a potential improvement, with the study utilizing projection stereolithography (P μ SL) 3D printing for precise and cost-effective MAE fabrication.
  • * The results showed that the MAEs had favorable electrode-skin interface impedance and performed well for EMG and ECG measurements without causing skin issues, indicating their promising biomedical applications for minimally invasive procedures.

Article Abstract

Electrophysiological recordings are vital in assessing biological functions, diagnosing diseases, and facilitating biofeedback and rehabilitation. The applications of conventional wet (gel) electrodes often come with some limitations. Microneedle array electrodes (MAEs) present a possible solution for high-quality electrophysiological acquisition, while the prior technologies for MAE fabrication have been either complex, expensive, or incapable of producing microneedles with uniform dimensions. This work employed a projection stereolithography (P μ SL) 3D printing technology to fabricate MAEs with micrometer-level precision. The MAEs were compared with gel and flat electrodes on electrode-skin interface impedance (EII) and performances of EMG and ECG acquisition. The experimental results indicate that the P μ SL 3D printing technology contributed to an easy-to-perform and low-cost fabrication approach for MAEs. The developed MAEs exhibited promising EII and enabled a stable EMG and ECG acquisition in different conditions without inducing skin allergies, inflammation, or injuries. This research lies in the development of a type of customizable MAE with considerable biomedical application potentials for ultra-minimally invasive or non-invasive electrophysiological acquisition.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2024.3422489DOI Listing

Publication Analysis

Top Keywords

printing technology
12
electrophysiological acquisition
12
microneedle array
8
array electrodes
8
high-quality electrophysiological
8
emg ecg
8
ecg acquisition
8
acquisition
5
maes
5
electrodes
4

Similar Publications

Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.

View Article and Find Full Text PDF

Objectives: The aim of this systematic review and network meta-analysis was to compare the flexural strength of provisional fixed dental prostheses (PFDPs) fabricated using different 3D printing technologies, including digital light processing (DLP), stereolithography (SLA), liquid crystal display (LCD), selective laser sintering (SLS), Digital Light Synthesis (DLS), and fused deposition modeling (FDM).

Materials And Methods: A comprehensive literature search was conducted in databases including PubMed, Web of Science, Scopus, and Open Grey up to September 2024. Studies evaluating the flexural strength of PFDPs fabricated by 3D printing systems were included.

View Article and Find Full Text PDF

This study advances microfluidic probe (MFP) technology through the development of a 3D-printed Microfluidic Mixing Probe (MMP), which integrates a built-in pre-mixer network of channels and features a lined array of paired injection and aspiration apertures. By combining the concepts of hydrodynamic flow confinements (HFCs) and "Christmas-tree" concentration gradient generation, the MMP can produce multiple concentration-varying flow dipoles, ranging from 0 to 100%, within an open microfluidic environment. This innovation overcomes previous limitations of MFPs, which only produced homogeneous bioreagents, by utilizing the pre-mixer to create distinct concentration of injected biochemicals.

View Article and Find Full Text PDF

Purpose: The purpose of this research was to develop and characterize dual-drug Isoniazid-Pyridoxine gummies using Semisolid Extrusion (SSE) 3D printing technology, aimed at personalized dosing for a broad patient demographic, from pediatric to geriatric. This study leverages SSE 3D printing, an innovative approach in personalized medicine, to enable precise dose customization and improve patient adherence. By formulating dual drug-loaded gummies, the research addresses the challenges of pill burden and poor palatability associated with traditional tuberculosis regimens, ultimately enhancing the therapeutic experience and effectiveness for patients across various age groups.

View Article and Find Full Text PDF

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

Nat Mater

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!