Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ultrafast high-energy nonadiabatic excited-state dynamics of the benzylidenedimethylimidazolinone chromophore dimer has been investigated using an electronic structure method coupled with on-the-fly quantitative wave function analysis to gain insight into the photophysics of hot excitons in biological systems. The dynamical simulation provides a rationalization of the behavior of the exciton in a dimer after the photoabsorption of light to higher-energy states. The results suggest that hot exciton localization within the manifold of excited states is caused by the hindrance of torsional rotation due to imidazolinone (I) or phenolate (P) bonds i.e., Φ- or Φ-dihedral rotation, in the monomeric units of a dimer. This hindrance arises due to weak π-π stacking interaction in the dimer, resulting in an energetically uphill excited-state barrier for Φ- and Φ-twisted rotation, impeding the isomerization process in the chromophore. Thus, this study highlights the potential impact of the weak π-π interaction in regulating the photodynamics of the green fluorescent protein chromophore derivatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c02733 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!