A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative Field Evaluation and Transcriptome Analysis Reveals that Chromosome Doubling Enhances Sheath Blight Resistance in Rice. | LitMetric

Rice sheath blight, caused by Rhizoctonia solani Kihn (R. solani), poses a significant threat to rice production and quality. Autotetraploid rice, developed through chromosome doubling of diploid rice, holds great potential for enhancing biological and yield traits. However, its resistance to sheath blight in the field has remained unclear. In this study, the field resistance of 35 autotetraploid genotypes and corresponding diploids was evaluated across three environments from 2020 to 2021. The booting stage was optimal for inoculating period based on the inoculation and analysis of R. solani at five rice growth stages. We found autotetraploids generally exhibited lower disease scores than diploids, indicating enhanced resistance after chromosome doubling. Among the 35 genotypes, 16 (45.71%) displayed increased resistance, 2 (5.71%) showed decreased resistance, and 17 (48.57%) displayed unstable resistance in different sowing dates. All combinations of the genotype, environment and ploidy, including the genotype-environment-ploidy interaction, contributed significantly to field resistance. Chromosome doubling increased sheath blight resistance in most genotypes, but was also dependent on the genotype-environment interaction. To elucidate the enhanced resistance mechanism, RNA-seq revealed autotetraploid recruited more down-regulated differentially expressed genes (DEGs), additionally, more resistance-related DEGs, were down-regulated at 24 h post inoculation in autotetraploid versus diploid. The ubiquinone/terpenoid quinone and diterpenoid biosynthesis pathways may play key roles in ploidy-specific resistance mechanisms. In summary, our findings shed light on the understanding of sheath blight resistance mechanisms in autotetraploid rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222352PMC
http://dx.doi.org/10.1186/s12284-024-00722-yDOI Listing

Publication Analysis

Top Keywords

sheath blight
20
chromosome doubling
16
resistance
12
blight resistance
12
autotetraploid rice
8
field resistance
8
enhanced resistance
8
resistance chromosome
8
resistance mechanisms
8
rice
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!