A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqhn8d5erf6kccgl3p1fiapgvcvodsvec): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Confounding Factors in Targeted Degradation of Short-Lived Proteins. | LitMetric

AI Article Synopsis

  • Targeted protein degradation is a new approach in drug discovery, but the natural half-life of proteins greatly influences how effective these degraders are, and this relationship hasn’t been thoroughly studied.
  • Research shows that short-lived proteins can misleadingly appear to be degraded by agents that actually halt protein synthesis, like GSPT1 degraders and cytotoxic drugs.
  • The findings indicate that understanding a target protein's half-life is crucial for selecting targets and designing control experiments to validate the effectiveness of new protein degrading agents.

Article Abstract

Targeted protein degradation has recently emerged as a novel option in drug discovery. Natural protein half-life is expected to affect the efficacy of degrading agents, but to what extent it influences target protein degradation has not been systematically explored. Using simple mathematical modeling of protein degradation, we find that the natural half-life of a target protein has a dramatic effect on the level of protein degradation induced by a degrader agent which can pose significant hurdles to screening efforts. Moreover, we show that upon screening for degraders of short-lived proteins, agents that stall protein synthesis, such as GSPT1 degraders and generally cytotoxic compounds, deceptively appear as protein-degrading agents. This is exemplified by the disappearance of short-lived proteins such as MCL1 and MDM2 upon GSPT1 degradation and upon treatment with cytotoxic agents such as doxorubicin. These findings have implications for target selection as well as for the type of control experiments required to conclude that a novel agent works as a bona fide targeted protein degrader.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.4c00152DOI Listing

Publication Analysis

Top Keywords

protein degradation
16
short-lived proteins
12
protein
8
targeted protein
8
target protein
8
degradation
6
confounding factors
4
factors targeted
4
targeted degradation
4
degradation short-lived
4

Similar Publications

Ring finger protein 5 mediates STING degradation through ubiquitinating K135 and K155 in a teleost fish.

Front Immunol

December 2024

School of Marine Sciences, State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China.

Stimulator of interferon genes (STING) is a key connector protein in interferon (IFN) signaling, crucial for IFN induction during the activation of antiviral innate immunity. In mammals, ring finger protein 5 (RNF5) functions as an E3 ubiquitin ligase, mediating STING regulation through K150 ubiquitylation to prevent excessive IFN production. However, the mechanisms underlying RNF5's regulation of STING in teleost fish remain unknown.

View Article and Find Full Text PDF

Chronic wounds in diabetic patients experience significant clinical challenges due to compromised healing processes. Hypoxia-inducible factor-1 alpha (HIF-1α) is a critical regulator in the cellular response to hypoxia, enhancing angiogenesis and tissue restoration. Nevertheless, the cellular response to the developed chronic hypoxia within diabetes is impaired, likely due to the destabilization of HIF-1α via degradation by prolyl hydroxylase domain (PHD) enzymes.

View Article and Find Full Text PDF

Multi-omics analysis reveals interactions between host and microbes in Bama miniature pigs during weaning.

Front Microbiol

December 2024

Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China.

Introduction: There are complex interactions between host and gut microbes during weaning, many of the mechanisms are not yet fully understood. Previous research mainly focuses on commercial pigs, whereas limited information has been known about the host and gut microbe interactions in miniature pigs.

Methods: To address the issue in Bama miniature piglets that were weaned 30 days after birth, we collected samples on days 25 and 36 for metabolomics, transcriptomics, and microgenomics analysis.

View Article and Find Full Text PDF

With the rapid emergence of pufferfish aquaculture and processing industries, fish skin is underutilized as a byproduct of processing, leading to resource waste. In this study, skin collagen (TBSC) was extracted by acetic acid solubilization and its physicochemical properties were analyzed. The effects of TBSC and the TBSC hydrolysate (TBSCH) on ultraviolet (UV) irradiation-induced photoaging were investigated using a mouse model.

View Article and Find Full Text PDF

Deciphering metabolic pathways: A treasure map to therapeutic targets.

Biotechnol Notes

November 2024

Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206.

Indian tick typhus is an infectious disease caused by intracellular gram-negative bacteria (). The bacterium is transmitted to humans through bite of infected ticks and sometimes by lice, fleas or mites. The disease is restricted to some areas with few cases but in last decade it is re-emerging with large number of cases from different areas of India.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!