Simulation-Guided Conformational Space Exploration to Assess Reactive Conformations of a Ribozyme.

J Chem Theory Comput

PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France.

Published: July 2024

AI Article Synopsis

  • Self-splicing ribozymes are RNA enzymes that can catalyze their own cleavage, playing important roles in viral replication and potentially representing early RNA systems crucial to the origins of life.
  • Studying these ribozymes is challenging because the natural reactions happen quickly and are hard to observe experimentally, so molecular simulations are often used to explore their behavior and reaction pathways.
  • In particular, research on the hairpin ribozyme reveals that commonly assumed active forms are actually rare and unstable, while a more stable structure could indicate a different catalytic mechanism that doesn’t require typical chemical activation.

Article Abstract

Self-splicing ribozymes are small ribonucleic acid (RNA) enzymes that catalyze their own cleavage through a transphosphoesterification reaction. While this process is involved in some specific steps of viral RNA replication and splicing, it is also of importance in the context of the (putative) first autocatalytic RNA-based systems that could have preceded the emergence of modern life. The uncatalyzed phosphoester bond formation is thermodynamically very unfavorable, and many experimental studies have focused on understanding the molecular features of catalysis in these ribozymes. However, chemical reaction paths are short-lived and not easily characterized by experimental approaches, so molecular simulation approaches appear as an ideal tool to unveil the molecular details of the reaction. Here, we focus on the model hairpin ribozyme. We show that identifying a relevant initial conformation for reactivity studies, which is frequently overlooked in mixed quantum-classical studies that predominantly concentrate on the chemical reaction itself, can be highly challenging. These challenges stem from limitations in both available experimental structures (which are chemically altered to prevent self-cleavage) and the accuracy of force fields, together with the necessity for comprehensive sampling. We show that molecular dynamics simulations, combined with extensive conformational phase space exploration with Hamiltonian replica-exchange simulations, enable us to characterize the relevant conformational basins of the minimal hairpin ribozyme in the ligated state prior to self-cleavage. We find that what is usually considered a canonical reactive conformation with active site geometries and hydrogen-bond patterns that are optimal for the addition-elimination reaction with general acid/general base catalysis is metastable and only marginally populated. The thermodynamically stable conformation appears to be consistent with the expectations of a mechanism that does not require the direct participation of ribozyme residues in the reaction. While these observations may suffer from forcefield inaccuracies, all investigated forcefields lead to the same conclusions upon proper sampling, contrasting with previous investigations on shorter timescales suggesting that at least one reparametrization of the Amber99 forcefield allowed to stabilize aligned active site conformations. Our study demonstrates that identifying the most pertinent reactant state conformation holds equal importance alongside the accurate determination of the thermodynamics and kinetics of the chemical steps of the reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00294DOI Listing

Publication Analysis

Top Keywords

space exploration
8
chemical reaction
8
hairpin ribozyme
8
active site
8
reaction
7
simulation-guided conformational
4
conformational space
4
exploration assess
4
assess reactive
4
reactive conformations
4

Similar Publications

Initial analyses showed that asteroid Ryugu's composition is close to CI (Ivuna-like) carbonaceous chondrites -the chemically most primitive meteorites, characterized by near-solar abundances for most elements. However, some isotopic signatures (e.g.

View Article and Find Full Text PDF

Breast cancer remains a significant challenge in oncology, highlighting the need for alternative therapeutic strategies that target necroptosis to overcome resistance to conventional therapies. Recent investigations into natural compounds have identified 8,12-dimethoxysanguinarine (SG-A) from Eomecon chionantha as a potential necroptosis inducer. This study presents the first computational exploration of SG-A interactions with key necroptotic proteins-RIPK1, RIPK3, and MLKL-through molecular docking, molecular dynamics (MD), density functional theory (DFT), and molecular electrostatic potential (MEP) analyses.

View Article and Find Full Text PDF

Background: Mixed exhaled air has been widely used to determine exhaled propofol concentrations with online analyzers, but changes in dead space proportions may lead to inaccurate assessments of critical drug concentration data. This study proposes a method to correct propofol concentration in mixed air by estimating pulmonary dead space through reconstructing volumetric capnography (Vcap) from time-CO and time-volume curves, validated with vacuum ultraviolet time-of-flight mass spectrometry (VUV-TOF MS).

Methods: Existing monitoring parameters, including time-volume and time-CO curves, were used to determine Vcap.

View Article and Find Full Text PDF

Understanding how wildlife responds to the spread of human-dominated habitats is a major challenge in ecology. It is still poorly understood how urban areas affect wildlife space-use patterns and consistent intra-specific behavioural differences (i.e.

View Article and Find Full Text PDF

Saliva Diagnostics in Spaceflight Virology Studies-A Review.

Viruses

December 2024

JES Tech, Human Health and Performance Directorate, Houston, TX 77058, USA.

Many biological markers of normal and disease states can be detected in saliva. The benefits of saliva collection for research include being non-invasive, ease of frequent sample collection, saving time, and being cost-effective. A small volume (≈1 mL) of saliva is enough for these analyses that can be collected in just a few minutes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!