Objectives: To evaluate the transferability of deep learning (DL) models for the early detection of adverse events to previously unseen hospitals.

Design: Retrospective observational cohort study utilizing harmonized intensive care data from four public datasets.

Setting: ICUs across Europe and the United States.

Patients: Adult patients admitted to the ICU for at least 6 hours who had good data quality.

Interventions: None.

Measurements And Main Results: Using carefully harmonized data from a total of 334,812 ICU stays, we systematically assessed the transferability of DL models for three common adverse events: death, acute kidney injury (AKI), and sepsis. We tested whether using more than one data source and/or algorithmically optimizing for generalizability during training improves model performance at new hospitals. We found that models achieved high area under the receiver operating characteristic (AUROC) for mortality (0.838-0.869), AKI (0.823-0.866), and sepsis (0.749-0.824) at the training hospital. As expected, AUROC dropped when models were applied at other hospitals, sometimes by as much as -0.200. Using more than one dataset for training mitigated the performance drop, with multicenter models performing roughly on par with the best single-center model. Dedicated methods promoting generalizability did not noticeably improve performance in our experiments.

Conclusions: Our results emphasize the importance of diverse training data for DL-based risk prediction. They suggest that as data from more hospitals become available for training, models may become increasingly generalizable. Even so, good performance at a new hospital still depended on the inclusion of compatible hospitals during training.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469625PMC
http://dx.doi.org/10.1097/CCM.0000000000006359DOI Listing

Publication Analysis

Top Keywords

adverse events
8
hospitals training
8
models
7
data
6
training
6
impact multi-institution
4
multi-institution datasets
4
datasets generalizability
4
generalizability machine
4
machine learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!