Chemical approaches to the sulfation of small molecules: current progress and future directions.

Essays Biochem

School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT, United Kingdom.

Published: December 2024

Sulfation is one of the most important modifications that occur to a wide range of bioactive small molecules including polysaccharides, proteins, flavonoids, and steroids. In turn, these sulfated molecules have significant biological and pharmacological roles in diverse processes including cell signalling, modulation of immune and inflammation response, anti-coagulation, anti-atherosclerosis, and anti-adhesive properties. This Essay summarises the most encountered chemical sulfation methods of small molecules. Sulfation reactions using sulfur trioxide amine/amide complexes are the most used method for alcohol and phenol groups in carbohydrates, steroids, proteins, and related scaffolds. Despite the effectiveness of these methods, they suffer from issues including multiple-purification steps, toxicity issues (e.g., pyridine contamination), purification challenges, stoichiometric excess of reagents which leads to an increase in reaction cost, and intrinsic stability issues of both the reagent and product. Recent advances including SuFEx, the in situ reagent approach, and TBSAB show the widespread appeal of novel sulfating approaches that will enable a larger exploration of the field in the years to come by simplifying the purification and isolation process to access bespoke sulfated small molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625868PMC
http://dx.doi.org/10.1042/EBC20240001DOI Listing

Publication Analysis

Top Keywords

small molecules
16
molecules
5
chemical approaches
4
sulfation
4
approaches sulfation
4
small
4
sulfation small
4
molecules current
4
current progress
4
progress future
4

Similar Publications

Highly sensitive surface-enhanced Raman scattering detection of adenosine triphosphate based on core-satellite assemblies.

Anal Methods

November 2017

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.

As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments.

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research.

View Article and Find Full Text PDF

Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells.

Sci China Life Sci

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.

Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages.

View Article and Find Full Text PDF

The important role of the histone acetyltransferases p300/CBP in cancer and the promising anticancer effects of p300/CBP inhibitors.

Cell Biol Toxicol

January 2025

Department of Ultrasound, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China.

Histone acetyltransferases p300 (E1A-associated protein p300) and CBP (CREB binding protein), collectively known as p300/CBP due to shared sequence and functional synergy, catalyze histone H3K27 acetylation and consequently induce gene transcription. p300/CBP over-expression or over-activity activates the transcription of oncogenes, leading to cancer cell growth, resistance to apoptosis, tumor initiation and development. The discovery of small molecule inhibitors targeting p300/CBP histone acetyltransferase activity, bromodomains, dual inhibitors of p300/CBP and BRD4 bromodomains, as well as proteolysis-targeted-chimaera p300/CBP protein degraders, marks significant progress in cancer therapeutics.

View Article and Find Full Text PDF

Pectin is a major component of plant cells walls. The extent to which pectin chains crosslink with one another determines crucial properties including cell wall strength, porosity, and the ability of small, biologically significant molecules to access the cell. Despite its importance, significant gaps remain in our comprehension, at the molecular level, of how pectin cross-links influence the mechanical and physical properties of cell walls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!