AI Article Synopsis

  • Imaging-based spatial transcriptomics generates data about mRNA classes, which researchers analyze to find regions with similar mRNA compositions across different spatial scales.
  • Traditional methods for identifying these regions are limited by the need for additional data or long optimization processes, hindering exploratory analysis.
  • The new tool "Points2Regions" improves efficiency by quickly extracting features from mRNA data and clustering them, enabling fast identification of biologically relevant regions without extra data, and is available as a Python package with user-friendly visualization options.

Article Abstract

Imaging-based spatial transcriptomics techniques generate data in the form of spatial points belonging to different mRNA classes. A crucial part of analyzing the data involves the identification of regions with similar composition of mRNA classes. These biologically interesting regions can manifest at different spatial scales. For example, the composition of mRNA classes on a cellular scale corresponds to cell types, whereas compositions on a millimeter scale correspond to tissue-level structures. Traditional techniques for identifying such regions often rely on complementary data, such as pre-segmented cells, or lengthy optimization. This limits their applicability to tasks on a particular scale, restricting their capabilities in exploratory analysis. This article introduces "Points2Regions," a computational tool for identifying regions with similar mRNA compositions. The tool's novelty lies in its rapid feature extraction by rasterizing points (representing mRNAs) onto a pyramidal grid and its efficient clustering using a combination of hierarchical and -means clustering. This enables fast and efficient region discovery across multiple scales without relying on additional data, making it a valuable resource for exploratory analysis. Points2Regions has demonstrated performance similar to state-of-the-art methods on two simulated datasets, without relying on segmented cells, while being several times faster. Experiments on real-world datasets show that regions identified by Points2Regions are similar to those identified in other studies, confirming that Points2Regions can be used to extract biologically relevant regions. The tool is shared as a Python package integrated into TissUUmaps and a Napari plugin, offering interactive clustering and visualization, significantly enhancing user experience in data exploration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.24884DOI Listing

Publication Analysis

Top Keywords

mrna classes
12
interactive clustering
8
imaging-based spatial
8
spatial transcriptomics
8
composition mrna
8
identifying regions
8
exploratory analysis
8
data
6
regions
6
points2regions
4

Similar Publications

Complex transcription regulation of acidic chitinase suggests fine-tuning of digestive processes in Drosera binata.

Planta

January 2025

Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.

DbChitI-3, Drosera binata's acidic chitinase, peaks at pH 2.5 from 15 °C to 30 °C. Gene expression is stimulated by polysaccharides and suppressed by monosaccharide digestion, implying a feedback loop in its transcriptional regulation.

View Article and Find Full Text PDF

A pseudogene is a non-functional copy of a protein-coding gene. Processed pseudogenes, which are created by the reverse transcription of mRNA and subsequent integration of the resulting cDNA into the genome, being a major pseudogene class, represent a significant challenge in genome analysis due to their high sequence similarity to the parent genes and their frequent absence in the reference genome. This homology can lead to errors in variant identification, as sequences derived from processed pseudogenes can be incorrectly assigned to parental genes, complicating correct variant calling.

View Article and Find Full Text PDF

Transcriptomics and Proteomics Analysis of the Liver of Knockout Mice.

Int J Mol Sci

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.

RAD52 plays crucial roles in several aspects of mammalian cells, including DNA double-strand breaks repair, viral infection, cancer development, and antibody class switching. To comprehensively elucidate the role of RAD52 in maintaining genome stability and uncover additional functions of RAD52 in mammals, we performed the transcriptomics and proteomics analysis of the liver of knockout mice. Transcriptomics analysis reveals overexpression of mitochondrial genes in the liver of knockout (RAD52KO) mice.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression.

View Article and Find Full Text PDF

Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!